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2 INTRODUCTION:



CHAPTER

ONE

OVERVIEW

Open Bandit Pipeline (OBP) is an open source python library for bandit algorithms and off-policy evaluation (OPE).
The toolkit comes with the Open Bandit Dataset , a large-scale logged bandit feedback data collected on a fashion
e-commerce platform, ZOZOTOWN. The purpose of the open data and library is to enable easy, realistic, and re-
producible evaluation of bandit algorithms and OPE. OBP has a series of implementations of dataset preprocessing,
bandit policy interfaces, and a variety of OPE estimators.

Our open data and pipeline facilitate evaluation and comparison related to the following research topics.

• Bandit Algorithms: Our data include the probabilities of each action being selected by behavior policies (the
true propensity scores).

Therefore, it enables the evaluation of new online bandit algorithms, including contextual and combinatorial algo-
rithms, in a large real-world setting.

• Off-Policy Evaluation: We present implementations of behavior policies used when collecting datasets as a
part of our pipeline.

Our open data also contains logged bandit feedback data generated by multiple behavior policies. Therefore, it enables
the evaluation of off-policy evaluation with ground-truths for the performances of evaluation policies.

This website contains pages with example analyses to help demonstrate the usage of this library. Additionally, it
presents examples of evaluating counterfactual bandit algorithms and OPE itself. The reference page contains the full
reference documentation for the current functions of this toolkit.

3
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CHAPTER

TWO

ALGORITHMS AND OPE ESTIMATORS SUPPORTED

2.1 Bandit Algorithms

• Online

– Context-free

* Random

* Epsilon Greedy

* Bernoulli Thompson Sampling

– Contextual (Linear)

* Linear Epsilon Greedy

* Linear Thompson Sampling [10]

* Linear Upper Confidence Bound [11]

– Contextual (Logistic)

* Logistic Epsilon Greedy

* Logistic Thompson Sampling [12]

* Logistic Upper Confidence Bound [13]

• Offline (Off-Policy Learning) [4]

– Inverse Probability Weighting

2.2 OPE Estimators

• Replay Method (RM) [14]

• Direct Method (DM) [15]

• Inverse Probability Weighting (IPW) [2] [3]

• Self-Normalized Inverse Probability Weighting (SNIPW) [16]

• Doubly Robust (DR) [4]

• Switch Estimators [8]

• Doubly Robust with Optimistic Shrinkage (DRos) [9]

• More Robust Doubly Robust (MRDR) [1]

5
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• Double Machine Learning (DML) [17]
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CHAPTER

THREE

CITATION

If you use our dataset and pipeline in your work, please cite our paper below.

@article{saito2020large, title={Large-scale Open Dataset, Pipeline, and Benchmark for Bandit Algorithms},
author={Saito, Yuta, Shunsuke Aihara, Megumi Matsutani, Yusuke Narita}, journal={arXiv preprint
arXiv:2008.07146}, year={2020}

}
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CHAPTER

FOUR

GOOGLE GROUP

If you are interested in the Open Bandit Project, we can follow the updates at its google group: https://groups.google.
com/g/open-bandit-project

9
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CHAPTER

FIVE

CONTACT

For any question about the paper, data, and pipeline, feel free to contact: saito@hanjuku-kaso.com
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CHAPTER

SIX

TABLE OF CONTENTS

6.1 About

Motivated by the paucity of real-world data and implementation enabling the evaluation and comparison of OPE, we
release the following open-source dataset and pipeline software for research uses.

6.1.1 Open Bandit Dataset (OBD)

Open Bandit Dataset is a public real-world logged bandit feedback data. The dataset is provided by ZOZO, Inc., the
largest Japanese fashion e-commerce company with over 5 billion USD market capitalization (as of May 2020). The
company uses multi-armed bandit algorithms to recommend fashion items to users in a large-scale fashion e-commerce
platform called ZOZOTOWN. The following figure presents examples of displayed fashion items as actions.

We collected the data in a 7-days experiment in late November 2019 on three campaigns, corresponding to “all”,
“men’s”, and “women’s” items, respectively. Each campaign randomly uses either the Random policy or the Bernoulli
Thompson Sampling (Bernoulli TS) policy for each user impression. Note that we pre-trained Bernoulli TS for over
a month before the data collection process and the policy well converges to a fixed one. Thus, we suppose our data
is generated by a fixed policy and apply the standard OPE formulation that assumes static behavior and evaluation

13
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policies. These policies select three of the possible fashion items to each user. Let ℐ := {0, . . . , 𝑛} be a set of 𝑛 + 1
items and 𝒦 := {0, . . . , 𝑘} be a set of 𝑘+ 1 positions. The above figure shows that 𝑘+ 1 = 3 for our data. We assume
that the reward (click indicator) depends only on the item and its position, which is a general assumption on the click
generative model in the web industry:cite:Li2018. Under the assumption, the action space is simply the product of the
item set and the position set, i.e., = ℐ × 𝒦. Then, we can apply the standard OPE setup and estimators to our setting.
We describe some statistics of the dataset in the following.

The data is large and contains many millions of recommendation instances. It also includes the true action choice
probabilities by behavior policies computed by Monte Carlo simulations based on the policy parameters (e.g., param-
eters of the beta distribution used by Bernoulli TS) used during the data collection process. The number of actions is
also sizable, so this setting is challenging for bandit algorithms and their OPE. We share the full version of our data at
https://research.zozo.com/data.html

6.1.2 Open Bandit Pipeline (OBP)

Open Bandit Pipeline is a series of implementations of dataset preprocessing, policy learning, and evaluation of OPE
estimators. This pipeline allows researchers to focus on building their bandit algorithm or OPE estimator and easily
compare them with others’ methods in realistic and reproducible ways. Thus, it facilitates reproducible research on
bandit algorithms and off-policy evaluation.

14 Chapter 6. Table of Contents
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Open Bandit Pipeline consists of the following main modules.

• dataset module: This module provides a data loader for Open Bandit Dataset and a flexible interface for han-
dling logged bandit feedback. It also provides tools to generate synthetic bandit datasets.

• policy module: This module provides interfaces for online and offline bandit algorithms. It also implements
several standard algorithms.

• simulator module: This module provides functions for conducting offline bandit simulation.

• ope module: This module provides interfaces for OPE estimators. It also implements several standard OPE
estimators.

In addition to the above algorithms and estimators, the pipeline also provides flexible interfaces. Therefore, researchers
can easily implement their own algorithms or estimators and evaluate them with our data and pipeline. Moreover, the
pipeline provides an interface for handling logged bandit feedback datasets. Thus, practitioners can combine their own
datasets with the pipeline and easily evaluate bandit algorithms’ performances in their settings.

Please see package reference for detailed information about Open Bandit Pipeline.

To our knowledge, our real-world dataset and pipeline are the first to include logged bandit datasets collected by
running multiple different policies, policy implementations used in production, and their ground-truth policy values.
These features enable the evaluation of OPE for the first time.

6.2 Related Resources

We summarize existing related resources for bandit algorithms and off-policy evaluation.

6.2.1 Related Datasets

Our dataset is most closely related to those of [Lefortier2016] and [11]. [Lefortier2016] introduces a large-scale logged
bandit feedback data (Criteo data) from a leading company in the display advertising, Criteo. The data contains context
vectors of user impressions, advertisements (ads) as actions, and click indicators as reward. It also provides the ex
ante probability of each ad being selected by the behavior policy. Therefore, this data can be used to compare different
off-policy learning methods, which aim to learn a new bandit policy using only log data generated by a behavior
policy. In contrast, [11] introduces a dataset (Yahoo! data) collected on a news recommendation interface of the
the Yahoo! Today Module. The data contains context vectors of user impressions, presented news as actions, and
click indicators as reward. It was collected by running uniform random policy on the new recommendation platform,
allowing researchers to evaluate their own bandit algorithms.

However, the Criteo and Yahoo! data have limitations, which we overcome as follows:

• The previous datasets do not provide the code (production implementation) of their behavior policy. Moreover,
the data was collected by running only a single behavior policy. As a result, these data cannot be used for the
evaluation and comparison of different OPE estimators.

→ In contrast, we provide the code of our behavior policies (i.e., Bernoulli TS and Random) in our pipeline, which
allows researchers to re-run the same behavior policies on the log data. Our open data also contains logged bandit
feedback data generated by multiple behavior policies. It enables the evaluation and comparison of different OPE
estimators. This is the first large-scale bandit dataset that enables such evaluation of OPE with the ground-truth policy
value of behavior policies.

• The previous datasets do not provide a pipeline implementation to handle their data. Researchers have to re-
implement the experimental environment by themselves before implementing their own methods. This may lead
to inconsistent experimental conditions across different studies, potentially causing reproducibility issues.

6.2. Related Resources 15
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→ We implement the Open Bandit Pipeline to simplify and standardize the experimental processing of bandit algo-
rithms and OPE with our open data. This tool thus contributes to the reproducible and transparent use of our data.

The following table summarizes key differences between our data and existing ones.

6.2.2 Related Packages

There are several existing Python packages related to our Open Bandit Pipeline. For example, contextualbandits
package (https://github.com/david-cortes/contextualbandits) contains implementations of several contextual bandit al-
gorithms [Cortes2018]. It aims to provide an easy procedure to compare bandit algorithms to reproduce research pa-
pers that do not provide easily-available implementations. In addition, RecoGym (https://github.com/criteo-research/
reco-gym) focuses on providing simulation bandit environments imitating the e-commerce recommendation setting
[Rohde2018]. This package also implements an online bandit algorithm based on epsilon greedy and off-policy learn-
ing method based on IPW.

However, the following features differentiate our pipeline from the previous ones:

• The previous packages focus on implementing and comparing online bandit algorithms or off-policy learning
method. Instead, they cannot be used to implement and compare the off-policy evaluation methods.

→ Our package implements a wide variety of OPE estimators including advanced ones such as Switch Estimators
[8], More Robust Doubly Robust [1], and Doubly Robust with Shrinkage [9]. Moreover, it is possible to compare
the estimation accuracies of these estimators with our package in a fair manner. Our package also provides flexible
interfaces for implementing new OPE estimators. Thus, researchers can easily compare their own estimators with
other methods using our packages.

• The previous packages cannot handle real-world bandit datasets.

→ Our package comes with the Open Bandit Dataset and includes the dataset module. This enables the evaluation of
bandit algorithms and off-policy estimators using our real-world data. This function contributes to realistic experiments
on these topics.

The following table summarizes key differences between our pipeline and existing ones.

16 Chapter 6. Table of Contents
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6.3 Overview

6.3.1 Setup

We consider a general contextual bandit setting. Let 𝑟 ∈ [0, 𝑅max] denote a reward or outcome variable (e.g., whether
a fashion item as an action results in a click). We let 𝑥 ∈ be a context vector (e.g., the user’s demographic profile) that
the decision maker observes when picking an action. Rewards and contexts are sampled from the unknown probability
distributions 𝑝(𝑟 | 𝑥, 𝑎) and 𝑝(𝑥), respectively. Let := {0, . . . ,𝑚} be a finite set of 𝑚 + 1 actions. We call a function
𝜋 :→ ∆() a policy. It maps each context 𝑥 ∈ into a distribution over actions, where 𝜋(𝑎 | 𝑥) is the probability of
taking action 𝑎 given 𝑥.

Let := {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 rounds of observations. 𝑎𝑡 is a discrete variable indicating which action in is chosen in round
𝑡. 𝑟𝑡 and 𝑥𝑡 denote the reward and the context observed in round 𝑡, respectively. We assume that a logged bandit
feedback is generated by a behavior policy 𝜋𝑏 as follows:

{(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑖=1 ∼
𝑇∏︁

𝑖=1

𝑝(𝑥𝑡)𝜋𝑏(𝑎𝑡 | 𝑥𝑡)𝑝(𝑟𝑡 | 𝑥𝑡, 𝑎𝑡),

where each context-action-reward triplets are sampled independently from the product distribution. Note that we
assume 𝑎𝑡 is independent of 𝑟𝑡 conditional on 𝑥𝑡.

We let 𝜋(𝑥, 𝑎, 𝑟) := 𝑝(𝑥)𝜋(𝑎 | 𝑥)𝑝(𝑟 | 𝑥, 𝑎) be the product distribution by a policy 𝜋. For a function 𝑓(𝑥, 𝑎, 𝑟), we use
[𝑓 ] := ||−1

∑︀
(𝑥𝑡,𝑎𝑡,𝑟𝑡)∈ 𝑓(𝑥𝑡, 𝑎𝑡, 𝑟𝑡) to denote its empirical expectation over 𝑇 observations in . Then, for a function

𝑔(𝑥, 𝑎), we let 𝑔(𝑥, 𝜋) :=𝑎∼𝜋(𝑎|𝑥) [𝑔(𝑥, 𝑎) | 𝑥]. We also use 𝑞(𝑥, 𝑎) :=𝑟∼𝑝(𝑟|𝑥,𝑎) [𝑟 | 𝑥, 𝑎] to denote the mean reward
function.

6.3.2 Estimation Target

We are interested in using the historical logged bandit data to estimate the following policy value of any given evalu-
ation policy 𝜋𝑒 which might be different from 𝜋𝑏:

𝑉 (𝜋𝑒) :=(𝑥,𝑎,𝑟)∼𝜋𝑒(𝑥,𝑎,𝑟) [𝑟].

where the last equality uses the independence of 𝐴 and 𝑌 (·) conditional on 𝑋 and the definition of 𝜋𝑏(·|𝑋). We
allow the evaluation policy 𝜋𝑒 to be degenerate, i.e., it may choose a particular action with probability 1. Estimating
𝑉 (𝜋𝑒) before implementing 𝜋𝑒 in an online environment is valuable because 𝜋𝑒 may perform poorly and damage user
satisfaction. Additionally, it is possible to select an evaluation policy that maximizes the policy value by comparing
their estimated performances without having additional implementation cost.

6.3. Overview 17
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6.4 Estimators

6.4.1 Direct Method (DM)

A widely-used method, DM, first learns a supervised machine learning model, such as random forest, ridge regression,
and gradient boosting, to estimate the mean reward function. DM then uses it to estimate the policy value as

𝑉DM(𝜋𝑒; , 𝑞) := [𝑞(𝑥𝑡, 𝜋𝑒)],

where 𝑞(𝑎 | 𝑥) is the estimated reward function. If 𝑞(𝑎 | 𝑥) is a good approximation to the mean reward function,
this estimator accurately estimates the policy value of the evaluation policy 𝑉 𝜋 . If 𝑞(𝑎 | 𝑥) fails to approximate the
mean reward function well, however, the final estimator is no longer consistent. The model misspecification issue is
problematic because the extent of misspecification cannot be easily quantified from data [1].

6.4.2 Inverse Probability Weighting (IPW)

To alleviate the issue with DM, researchers often use another estimator called IPW [2] [3]. IPW re-weights the rewards
by the ratio of the evaluation policy and behavior policy as

𝑉IPW(𝜋𝑒; ) := [𝑤(𝑥𝑡, 𝑎𝑡)𝑟𝑡],

where 𝑤(𝑥, 𝑎) := 𝜋𝑒(𝑎 | 𝑥)/𝜋𝑏(𝑎 | 𝑥) is the importance weight given 𝑥 and 𝑎. When the behavior policy is known,
the IPW estimator is unbiased and consistent for the policy value. However, it can have a large variance, especially
when the evaluation policy significantly deviates from the behavior policy.

6.4.3 Doubly Robust (DR)

The final approach is DR [4], which combines the above two estimators as

𝑉DR := [𝑞(𝑥𝑡, 𝜋𝑒) + 𝑤(𝑥𝑡, 𝑎𝑡)(𝑟𝑡 − 𝑞(𝑥𝑡, 𝑎𝑡))].

DR mimics IPW to use a weighted version of rewards, but DR also uses the estimated mean reward function as a
control variate to decrease the variance. It preserves the consistency of IPW if either the importance weight or the
mean reward estimator is accurate (a property called double robustness). Moreover, DR is semiparametric efficient [5]
when the mean reward estimator is correctly specified. On the other hand, when it is wrong, this estimator can have
larger asymptotic mean-squared-error than IPW [6] and perform poorly in practice [7].

6.4.4 Self-Normalized Estimators

Self-Normalized Inverse Probability Weighting (SNIPW) is an approach to address the variance issue with the original
IPW. It estimates the policy value by dividing the sum of weighted rewards by the sum of importance weights as:

𝑉SNIPW(𝜋𝑒; ) :=
[𝑤(𝑥𝑡, 𝑎𝑡)𝑟𝑡]

[𝑤(𝑥𝑡, 𝑎𝑡)]
.

SNIPW is more stable than IPW, because estimated policy value by SNIPW is bounded in the support of rewards and
its conditional variance given action and context is bounded by the conditional variance of the rewards:cite:kallus2019.
IPW does not have these properties. We can define Self-Normalized Doubly Robust (SNDR) in a similar manner as
follows.

𝑉SNDR(𝜋𝑒; ) :=

[︂
𝑞(𝑥𝑡, 𝜋𝑒) +

𝑤(𝑥𝑡, 𝑎𝑡)(𝑟𝑡 − 𝑞(𝑥𝑡, 𝑎𝑡))

[𝑤(𝑥𝑡, 𝑎𝑡)]

]︂
.

18 Chapter 6. Table of Contents
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6.4.5 Switch Estimators

The DR estimator can still be subject to the variance issue, particularly when the importance weights are large due to
low overlap. Switch-DR aims to reduce the effect of the variance issue by using DM where importance weights are
large as:

𝑉SwitchDR(𝜋𝑒; , 𝑞, 𝜏) := [𝑞(𝑥𝑡, 𝜋𝑒) + 𝑤(𝑥𝑡, 𝑎𝑡)(𝑟𝑡 − 𝑞(𝑥𝑡, 𝑎𝑡))I{𝑤(𝑥𝑡, 𝑎𝑡) ≤ 𝜏}] ,

where I{·} is the indicator function and 𝜏 ≥ 0 is a hyperparameter. Switch-DR interpolates between DM and DR.
When 𝜏 = 0, it coincides with DM, while 𝜏 → ∞ yields DR. This estimator is minimax optimal when 𝜏 is appropri-
ately chosen [8].

6.4.6 More Robust Doubly Robust (MRDR)

MRDR uses a specialized reward estimator (𝑞MRDR) that minimizes the variance of the resulting policy value estima-
tor:cite:Farajtabar2018. This estimator estimates the policy value as:

𝑉MRDR(𝜋𝑒; , 𝑞MRDR) := 𝑉DR(𝜋𝑒; , 𝑞MRDR),

where 𝒬 is a function class for the reward estimator. When 𝒬 is well-specified, then 𝑞MRDR = 𝑞. Here, even if 𝒬 is
misspecified, the derived reward estimator is expected to behave well since the target function is the resulting variance.

6.4.7 Doubly Robust with Optimistic Shrinkage (DRos)

[9] proposes DRs based on a new weight function 𝑤𝑜 : × → R+ that directly minimizes sharp bounds on the MSE of
the resulting estimator. DRs is defined as

𝑉DRs(𝜋𝑒; , 𝑞, 𝜆) := [𝑞(𝑥𝑡, 𝜋𝑒) + 𝑤𝑜(𝑥𝑡, 𝑎𝑡;𝜆)(𝑟𝑡 − 𝑞(𝑥𝑡, 𝑎𝑡))],

where 𝜆 ≥ 0 is a hyperparameter and the new weight is

𝑤𝑜(𝑥, 𝑎;𝜆) :=
𝜆

𝑤2(𝑥, 𝑎) + 𝜆
𝑤(𝑥, 𝑎).

When 𝜆 = 0, 𝑤𝑜(𝑥, 𝑎;𝜆) = 0 leading to the standard DM. On the other hand, as 𝜆 → ∞, 𝑤𝑜(𝑥, 𝑎;𝜆) = 𝑤(𝑥, 𝑎)
leading to the original DR.

6.5 Evaluation of OPE

Here we describe an experimental protocol to evaluate OPE estimators and use it to compare a wide variety of existing
estimators.

We can empirically evaluate OPE estimators’ performances by using two sources of logged bandit feedback collected
by two different policies 𝜋(ℎ𝑒) (hypothetical evaluation policy) and 𝜋(ℎ𝑏) (hypothetical behavior policy). We denote
log data generated by 𝜋(ℎ𝑒) and 𝜋(ℎ𝑏) as (ℎ𝑒) := {(𝑥

(ℎ𝑒)
𝑡 , 𝑎

(ℎ𝑒)
𝑡 , 𝑟

(ℎ𝑒)
𝑡 )}𝑇𝑡=1 and (ℎ𝑏) := {(𝑥

(ℎ𝑏)
𝑡 , 𝑎

(ℎ𝑏)
𝑡 , 𝑟

(ℎ𝑏)
𝑡 )}𝑇𝑡=1,

respectively. By applying the following protocol to several different OPE estimators, we can compare their estimation
performances:

1. Define the evaluation and test sets as:

• in-sample case: ev :=
(ℎ𝑏)
1:𝑇 , te :=

(ℎ𝑒)
1:𝑇

• out-sample case: ev :=
(ℎ𝑏)

1:𝑡
, te :=

(ℎ𝑒)

𝑡+1:𝑇

where 𝑎:𝑏 := {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑏𝑡=𝑎.
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2. Estimate the policy value of 𝜋(ℎ𝑒) using ev by an estimator 𝑉 . We can represent an estimated policy value by 𝑉
as 𝑉 (𝜋(ℎ𝑒);ev ).

3. Estimate 𝑉 (𝜋(ℎ𝑒)) by the on-policy estimation and regard it as the ground-truth as

𝑉on(𝜋(ℎ𝑒);te ) :=
te

[𝑟
(ℎ𝑒)
𝑡 ].

4. Compare the off-policy estimate 𝑉 (𝜋(ℎ𝑒);ev ) with its ground-truth 𝑉on(𝜋(ℎ𝑒);te ). We can evaluate the estima-
tion accuracy of 𝑉 by the following relative estimation error (relative-EE):

relative-EE(𝑉 ;ev ) :=

⃒⃒⃒⃒
⃒𝑉 (𝜋(ℎ𝑒);ev ) − 𝑉on(𝜋(ℎ𝑒);te )

𝑉on(𝜋(ℎ𝑒);te )

⃒⃒⃒⃒
⃒ .

5. To estimate standard deviation of relative-EE, repeat the above process several times with different bootstrap
samples of the logged bandit data created by sampling data with replacement from ev.

We call the problem setting without the sample splitting by time series as in-sample case. In contrast, we call that
with the sample splitting as out-sample case where OPE estimators aim to estimate the policy value of an evaluation
policy in the test data.

The following algorithm describes the detailed experimental protocol to evaluate OPE estimators.

Using the above protocol, our real-world data, and pipeline, we have performed extensive benchmark experiments on
a variety of existing off-policy estimators. The experimental results and the relevant discussion can be found in our
paper. The code for running the benchmark experiments can be found at zr-obp/benchmark/ope.
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6.6 Installation

obp is available on PyPI, and can be installed from pip or source as follows:

From pip:

pip install obp

From source:

git clone https://github.com/st-tech/zr-obp
cd zr-obp
python setup.py install

6.7 Quickstart

We show an example of conducting offline evaluation of the performance of Bernoulli Thompson Sampling (Bernoul-
liTS) as an evaluation policy using Inverse Probability Weighting (IPW) and logged bandit feedback generated by the
Random policy (behavior policy). We see that only ten lines of code are sufficient to complete OPE from scratch.

# a case for implementing OPE of the BernoulliTS policy using log data generated by
→˓the Random policy
>>> from obp.dataset import OpenBanditDataset
>>> from obp.policy import BernoulliTS
>>> from obp.ope import OffPolicyEvaluation, InverseProbabilityWeighting as IPW

# (1) Data loading and preprocessing
>>> dataset = OpenBanditDataset(behavior_policy='random', campaign='all')
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback()

# (2) Off-Policy Learning
>>> evaluation_policy = BernoulliTS(

n_actions=dataset.n_actions,
len_list=dataset.len_list,
is_zozotown_prior=True,
campaign="all",
random_state=12345

)
>>> action_dist = evaluation_policy.compute_batch_action_dist(

n_sim=100000, n_rounds=bandit_feedback["n_rounds"]
)

# (3) Off-Policy Evaluation
>>> ope = OffPolicyEvaluation(bandit_feedback=bandit_feedback, ope_estimators=[IPW()])
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)

# estimated performance of BernoulliTS relative to the ground-truth performance of
→˓Random
>>> relative_policy_value_of_bernoulli_ts = estimated_policy_value['ipw'] / bandit_
→˓feedback['reward'].mean()
>>> print(relative_policy_value_of_bernoulli_ts)
1.198126...

A detailed introduction with the same example can be found at quickstart. Below, we explain some important features
in the example flow.
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6.7.1 Data loading and preprocessing

We prepare an easy-to-use data loader for Open Bandit Dataset.

# load and preprocess raw data in "ALL" campaign collected by the Random policy
>>> dataset = OpenBanditDataset(behavior_policy='random', campaign='all')
# obtain logged bandit feedback generated by the behavior policy
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback()

>>> print(bandit_feedback.keys())
dict_keys(['n_rounds', 'n_actions', 'action', 'position', 'reward', 'pscore', 'context
→˓', 'action_context'])

Users can implement their own feature engineering in the pre_process method of obp.dataset.
OpenBanditDataset class. We show an example of implementing some new feature engineering processes in
custom_dataset.py.

Moreover, by following the interface of obp.dataset.BaseBanditDataset class, one can handle their own or
future open datasets for bandit algorithms other than our OBD.

6.7.2 Off-Policy Learning

After preparing a dataset, we now compute the action choice probability of BernoulliTS in the ZOZOTOWN produc-
tion. Then, we can use it as the evaluation policy.

# define evaluation policy (the Bernoulli TS policy here)
# by activating the `is_zozotown_prior` argument of BernoulliTS, we can replicate
→˓BernoulliTS used in ZOZOTOWN production.
>>> evaluation_policy = BernoulliTS(

n_actions=dataset.n_actions,
len_list=dataset.len_list,
is_zozotown_prior=True, # replicate the policy in the ZOZOTOWN production
campaign="all",
random_state=12345

)
# compute the distribution over actions by the evaluation policy using Monte Carlo
→˓simulation
# action_dist is an array of shape (n_rounds, n_actions, len_list)
# representing the distribution over actions made by the evaluation policy
>>> action_dist = evaluation_policy.compute_batch_action_dist(

n_sim=100000, n_rounds=bandit_feedback["n_rounds"]
)

The compute_batch_action_dist method of BernoulliTS computes the action choice probabilities based
on given hyperparameters of the beta distribution. action_dist is an array representing the distribution over
actions made by the evaluation policy.
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6.7.3 Off-Policy Evaluation

Our final step is off-policy evaluation (OPE), which attempts to estimate the performance of decision making policy
using log data generated by offline bandit simulation. Our pipeline also provides an easy procedure for doing OPE as
follows.

# estimate the policy value of BernoulliTS based on the distribution over actions by
→˓that policy
# it is possible to set multiple OPE estimators to the `ope_estimators` argument
>>> ope = OffPolicyEvaluation(bandit_feedback=bandit_feedback, ope_
→˓estimators=[ReplayMethod()])
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)
>>> print(estimated_policy_value)
{'ipw': 0.004553...} # dictionary containing estimated policy values by each OPE
→˓estimator.

# compare the estimated performance of BernoulliTS (evaluation policy)
# with the ground-truth performance of Random (behavior policy)
>>> relative_policy_value_of_bernoulli_ts = estimated_policy_value['ipw'] / bandit_
→˓feedback['reward'].mean()
# our OPE procedure suggests that BernoulliTS improves Random by 19.81%
>>> print(relative_policy_value_of_bernoulli_ts)
1.198126...

Users can implement their own OPE estimator by following the interface of obp.ope.
BaseOffPolicyEstimator class. obp.ope.OffPolicyEvaluation class summarizes and compares the
estimated policy values by several off-policy estimators. A detailed usage of this class can be found at quickstart.
bandit_feedback['reward'].mean() is the empirical mean of factual rewards (on-policy estimate of the
policy value) in the log and thus is the ground-truth performance of the behavior policy (the Random policy in this
example.).

6.8 OBP Package Reference

6.8.1 ope module

obp.ope.estimators Off-Policy Estimators.
obp.ope.meta Off-Policy Evaluation Class to Streamline OPE.
obp.ope.regression_model Regression Model Class for Estimating Mean Reward

Functions.

obp.ope.estimators

Off-Policy Estimators.
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Classes

BaseOffPolicyEstimator() Base class for OPE estimators.
DirectMethod(estimator_name) Estimate the policy value by Direct Method (DM).
DoublyRobust(estimator_name) Estimate the policy value by Doubly Robust (DR).
DoublyRobustWithShrinkage(estimator_name,
. . . )

Estimate the policy value by Doubly Robust with opti-
mistic shrinkage (DRos).

InverseProbabilityWeighting(estimator_name)Estimate the policy value by Inverse Probability Weight-
ing (IPW).

ReplayMethod(estimator_name) Estimate the policy value by Relpay Method (RM).
SelfNormalizedDoublyRobust(estimator_name) Estimate the policy value by Self-Normalized Doubly

Robust (SNDR).
SelfNormalizedInverseProbabilityWeighting(. . . )Estimate the policy value by Self-Normalized Inverse

Probability Weighting (SNIPW).
SwitchDoublyRobust(estimator_name, tau) Estimate the policy value by Switch Doubly Robust

(Switch-DR).
SwitchInverseProbabilityWeighting(. . . ) Estimate the policy value by Switch Inverse Probability

Weighting (Switch-IPW).

class obp.ope.estimators.BaseOffPolicyEstimator
Bases: object

Base class for OPE estimators.

abstract estimate_interval()→ Dict[str, float]
Estimate confidence interval of policy value by nonparametric bootstrap procedure.

abstract estimate_policy_value()→ float
Estimate policy value of an evaluation policy.

class obp.ope.estimators.DirectMethod(estimator_name: str = 'dm')
Bases: obp.ope.estimators.BaseOffPolicyEstimator

Estimate the policy value by Direct Method (DM).

Note: DM first learns a supervised machine learning model, such as ridge regression and gradient boosting, to
estimate the mean reward function (𝑞(𝑥, 𝑎) = E[𝑟|𝑥, 𝑎]). It then uses it to estimate the policy value as follows.

𝑉DM(𝜋𝑒;𝒟, 𝑞) := E𝒟

[︃∑︁
𝑎∈𝒜

𝑞(𝑥𝑡, 𝑎)𝜋𝑒(𝑎|𝑥𝑡)

]︃
,

= E𝒟[𝑞(𝑥𝑡, 𝜋𝑒)],

where 𝒟 = {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 is logged bandit feedback data with 𝑇 rounds collected by a behavior policy 𝜋𝑏.
E𝒟[·] is the empirical average over 𝑇 observations in 𝒟. 𝑞(𝑥, 𝑎) is an estimated expected reward given 𝑥 and 𝑎.
𝑞(𝑥𝑡, 𝜋) := E𝑎∼𝜋(𝑎|𝑥)[𝑞(𝑥, 𝑎)] is the expectation of the estimated reward function over 𝜋. To estimate the mean
reward function, please use obp.ope.regression_model.RegressionModel, which supports several fitting methods
specific to OPE.

If the regression model (𝑞) is a good approximation to the true mean reward function, this estimator accurately
estimates the policy value of the evaluation policy. If the regression function fails to approximate the mean
reward function well, however, the final estimator is no longer consistent.

Parameters estimator_name (str, default=’dm’.) – Name of off-policy estimator.
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References

Alina Beygelzimer and John Langford. “The offset tree for learning with partial labels.”, 2009.

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. “Doubly Robust Policy Evaluation and Opti-
mization.”, 2014.

estimate_interval(position: numpy.ndarray, action_dist: numpy.ndarray, esti-
mated_rewards_by_reg_model: numpy.ndarray, alpha: float = 0.05,
n_bootstrap_samples: int = 10000, random_state: Optional[int] = None,
**kwargs)→ Dict[str, float]

Estimate confidence interval of policy value by nonparametric bootstrap procedure.

Parameters

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the
bootstrap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-
lower confidence bounds.

Return type Dict[str, float]

estimate_policy_value(position: numpy.ndarray, action_dist: numpy.ndarray, esti-
mated_rewards_by_reg_model: numpy.ndarray, **kwargs)→ float

Estimate policy value of an evaluation policy.

Parameters

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

Returns V_hat – Estimated policy value (performance) of a given evaluation policy.

Return type float

class obp.ope.estimators.DoublyRobust(estimator_name: str = 'dr')
Bases: obp.ope.estimators.InverseProbabilityWeighting

Estimate the policy value by Doubly Robust (DR).

Note: Similar to DM, DR first learns a supervised machine learning model, such as ridge regression and
gradient boosting, to estimate the mean reward function (𝑞(𝑥, 𝑎) = E[𝑟|𝑥, 𝑎]). It then uses it to estimate the
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policy value as follows.

𝑉DR(𝜋𝑒;𝒟, 𝑞) := E𝒟[𝑞(𝑥𝑡, 𝜋𝑒) + 𝑤(𝑥𝑡, 𝑎𝑡)(𝑟𝑡 − 𝑞(𝑥𝑡, 𝑎𝑡))],

where 𝒟 = {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 is logged bandit feedback data with 𝑇 rounds collected by a behavior policy 𝜋𝑏.
𝑤(𝑥, 𝑎) := 𝜋𝑒(𝑎|𝑥)/𝜋𝑏(𝑎|𝑥) is the importance weight given 𝑥 and 𝑎. E𝒟[·] is the empirical average over 𝑇
observations in 𝒟. 𝑞(𝑥, 𝑎) is an estimated expected reward given 𝑥 and 𝑎. 𝑞(𝑥𝑡, 𝜋) := E𝑎∼𝜋(𝑎|𝑥)[𝑞(𝑥, 𝑎)] is the
expectation of the estimated reward function over 𝜋.

To estimate the mean reward function, please use obp.ope.regression_model.RegressionModel, which supports
several fitting methods specific to OPE such as more robust doubly robust.

DR mimics IPW to use a weighted version of rewards, but DR also uses the estimated mean reward function (the
regression model) as a control variate to decrease the variance. It preserves the consistency of IPW if either the
importance weight or the mean reward estimator is accurate (a property called double robustness). Moreover,
DR is semiparametric efficient when the mean reward estimator is correctly specified.

Parameters estimator_name (str, default=’dr’.) – Name of off-policy estimator.

References

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. “Doubly Robust Policy Evaluation and Opti-
mization.”, 2014.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. “More Robust Doubly Robust Off-policy
Evaluation.”, 2018.

estimate_interval(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray, es-
timated_rewards_by_reg_model: numpy.ndarray, alpha: float = 0.05,
n_bootstrap_samples: int = 10000, random_state: Optional[int] = None,
**kwargs)→ Dict[str, float]

Estimate confidence interval of policy value by nonparametric bootstrap procedure.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the
bootstrap procedure.
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• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-
lower confidence bounds.

Return type Dict[str, float]

estimate_policy_value(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray,
estimated_rewards_by_reg_model: numpy.ndarray)→ float

Estimate policy value of an evaluation policy.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

Returns V_hat – Estimated policy value by the DR estimator.

Return type float

class obp.ope.estimators.DoublyRobustWithShrinkage(estimator_name: str = 'dr-os',
lambda_: float = 0.0)

Bases: obp.ope.estimators.DoublyRobust

Estimate the policy value by Doubly Robust with optimistic shrinkage (DRos).

Note: DR with (optimistic) shrinkage replaces the importance weight in the original DR estimator with a new
weight mapping found by directly optimizing sharp bounds on the resulting MSE.

𝑉DRos(𝜋𝑒;𝒟, 𝑞, 𝜆) := E𝒟[𝑞(𝑥𝑡, 𝜋𝑒) + 𝑤𝑜(𝑥𝑡, 𝑎𝑡;𝜆)(𝑟𝑡 − 𝑞(𝑥𝑡, 𝑎𝑡))],

where 𝒟 = {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 is logged bandit feedback data with 𝑇 rounds collected by a behavior policy 𝜋𝑏.
𝑤(𝑥, 𝑎) := 𝜋𝑒(𝑎|𝑥)/𝜋𝑏(𝑎|𝑥) is the importance weight given 𝑥 and 𝑎. 𝑞(𝑥𝑡, 𝜋) := E𝑎∼𝜋(𝑎|𝑥)[𝑞(𝑥, 𝑎)] is the
expectation of the estimated reward function over 𝜋. E𝒟[·] is the empirical average over 𝑇 observations in
𝒟. 𝑞(𝑥, 𝑎) is an estimated expected reward given 𝑥 and 𝑎. To estimate the mean reward function, please use
obp.ope.regression_model.RegressionModel.

𝑤𝑜(𝑥𝑡, 𝑎𝑡;𝜆) is a new weight by the shrinkage technique which is defined as

𝑤𝑜(𝑥𝑡, 𝑎𝑡;𝜆) :=
𝜆

𝑤2(𝑥𝑡, 𝑎𝑡) + 𝜆
𝑤(𝑥𝑡, 𝑎𝑡).

When 𝜆 = 0, we have 𝑤𝑜(𝑥, 𝑎;𝜆) = 0 corresponding to the DM estimator. In contrast, as 𝜆 → ∞, 𝑤𝑜(𝑥, 𝑎;𝜆)
increases and in the limit becomes equal to the original importance weight, corresponding to the standard DR
estimator.
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Parameters

• lambda_ (float) – Shrinkage hyperparameter. This hyperparameter should be larger than or
equal to 0., otherwise it is meaningless.

• estimator_name (str, default=’dr-os’.) – Name of off-policy estimator.

References

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. “Doubly Robust Policy Evaluation and Opti-
mization.”, 2014.

Yi Su, Maria Dimakopoulou, Akshay Krishnamurthy, and Miroslav Dudik. “Doubly Robust Off-Policy Evalu-
ation with Shrinkage.”, 2020.

estimate_interval(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray, es-
timated_rewards_by_reg_model: numpy.ndarray, alpha: float = 0.05,
n_bootstrap_samples: int = 10000, random_state: Optional[int] = None,
**kwargs)→ Dict[str, float]

Estimate confidence interval of policy value by nonparametric bootstrap procedure.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the
bootstrap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-
lower confidence bounds.

Return type Dict[str, float]

estimate_policy_value(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray,
estimated_rewards_by_reg_model: numpy.ndarray)→ float

Estimate policy value of an evaluation policy.

Parameters
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• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

Returns V_hat – Estimated policy value by the DR estimator.

Return type float

class obp.ope.estimators.InverseProbabilityWeighting(estimator_name: str = 'ipw')
Bases: obp.ope.estimators.BaseOffPolicyEstimator

Estimate the policy value by Inverse Probability Weighting (IPW).

Note: Inverse Probability Weighting (IPW) estimates the policy value of a given evaluation policy 𝜋𝑒 by

𝑉IPW(𝜋𝑒;𝒟) := E𝒟[𝑤(𝑥𝑡, 𝑎𝑡)𝑟𝑡],

where 𝒟 = {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 is logged bandit feedback data with 𝑇 rounds collected by a behavior policy 𝜋𝑏.
𝑤(𝑥, 𝑎) := 𝜋𝑒(𝑎|𝑥)/𝜋𝑏(𝑎|𝑥) is the importance weight given 𝑥 and 𝑎. E𝒟[·] is the empirical average over 𝑇
observations in 𝒟.

IPW re-weights the rewards by the ratio of the evaluation policy and behavior policy (importance weight). When
the behavior policy is known, IPW is unbiased and consistent for the true policy value. However, it can have a
large variance, especially when the evaluation policy significantly deviates from the behavior policy.

Parameters estimator_name (str, default=’ipw’.) – Name of off-policy estimator.

References

Alex Strehl, John Langford, Lihong Li, and Sham M Kakade. “Learning from Logged Implicit Exploration
Data”., 2010.

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. “Doubly Robust Policy Evaluation and Opti-
mization.”, 2014.

estimate_interval(reward: numpy.ndarray, action: numpy.ndarray, position: numpy.ndarray,
pscore: numpy.ndarray, action_dist: numpy.ndarray, alpha: float = 0.05,
n_bootstrap_samples: int = 10000, random_state: Optional[int] = None,
**kwargs)→ Dict[str, float]

Estimate confidence interval of policy value by nonparametric bootstrap procedure.

Parameters
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• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the
bootstrap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-
lower confidence bounds.

Return type Dict[str, float]

estimate_policy_value(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray,
**kwargs)→ numpy.ndarray

Estimate policy value of an evaluation policy.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

Returns V_hat – Estimated policy value (performance) of a given evaluation policy.

Return type float

class obp.ope.estimators.ReplayMethod(estimator_name: str = 'rm')
Bases: obp.ope.estimators.BaseOffPolicyEstimator

Estimate the policy value by Relpay Method (RM).

Note: Replay Method (RM) estimates the policy value of a given evaluation policy 𝜋𝑒 by

𝑉RM(𝜋𝑒;𝒟) :=
E𝒟[I{𝜋𝑒(𝑥𝑡) = 𝑎𝑡}𝑟𝑡]
E𝒟[I{𝜋𝑒(𝑥𝑡) = 𝑎𝑡}]

,
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where 𝒟 = {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 is logged bandit feedback data with 𝑇 rounds collected by a behavior policy 𝜋𝑏.
𝜋𝑒 : 𝒳 → 𝒜 is the function representing action choices by the evaluation policy realized during offline bandit
simulation. E𝒟[·] is the empirical average over 𝑇 observations in 𝒟.

Parameters estimator_name (str, default=’rm’.) – Name of off-policy estimator.

References

Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. “Unbiased Offline Evaluation of Contextual-bandit-
based News Article Recommendation Algorithms.”, 2011.

estimate_interval(reward: numpy.ndarray, action: numpy.ndarray, position: numpy.ndarray, ac-
tion_dist: numpy.ndarray, alpha: float = 0.05, n_bootstrap_samples: int =
100, random_state: Optional[int] = None, **kwargs)→ Dict[str, float]

Estimate confidence interval of policy value by nonparametric bootstrap procedure.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the
bootstrap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-
lower confidence bounds.

Return type Dict[str, float]

estimate_policy_value(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, action_dist: numpy.ndarray, **kwargs)→ float

Estimate policy value of an evaluation policy.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

Returns V_hat – Estimated policy value (performance) of a given evaluation policy.

Return type float

class obp.ope.estimators.SelfNormalizedDoublyRobust(estimator_name: str = 'sndr')
Bases: obp.ope.estimators.DoublyRobust

Estimate the policy value by Self-Normalized Doubly Robust (SNDR).
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Note: Self-Normalized Doubly Robust estimates the policy value of a given evaluation policy 𝜋𝑒 by

𝑉SNDR(𝜋𝑒;𝒟, 𝑞) := E𝒟

[︂
𝑞(𝑥𝑡, 𝜋𝑒) +

𝑤(𝑥𝑡, 𝑎𝑡)(𝑟𝑡 − 𝑞(𝑥𝑡, 𝑎𝑡))

E𝒟[𝑤(𝑥𝑡, 𝑎𝑡)]

]︂
,

where 𝒟 = {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 is logged bandit feedback data with 𝑇 rounds collected by a behavior policy 𝜋𝑏.
𝑤(𝑥, 𝑎) := 𝜋𝑒(𝑎|𝑥)/𝜋𝑏(𝑎|𝑥) is the importance weight given 𝑥 and 𝑎. E𝒟[·] is the empirical average over 𝑇
observations in 𝒟. 𝑞(𝑥, 𝑎) is an estimated expected reward given 𝑥 and 𝑎. 𝑞(𝑥𝑡, 𝜋) := E𝑎∼𝜋(𝑎|𝑥)[𝑞(𝑥, 𝑎)] is
the expectation of the estimated reward function over 𝜋. To estimate the mean reward function, please use
obp.ope.regression_model.RegressionModel.

Similar to Self-Normalized Inverse Probability Weighting, SNDR estimator applies the self-normalized impor-
tance weighting technique to increase the stability of the original Doubly Robust estimator.

Parameters estimator_name (str, default=’sndr’.) – Name of off-policy estimator.

References

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. “Doubly Robust Policy Evaluation and Opti-
mization.”, 2014.

Nathan Kallus and Masatoshi Uehara. “Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for
Reinforcement Learning.”, 2019.

estimate_interval(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray, es-
timated_rewards_by_reg_model: numpy.ndarray, alpha: float = 0.05,
n_bootstrap_samples: int = 10000, random_state: Optional[int] = None,
**kwargs)→ Dict[str, float]

Estimate confidence interval of policy value by nonparametric bootstrap procedure.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the
bootstrap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.
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Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-
lower confidence bounds.

Return type Dict[str, float]

estimate_policy_value(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray,
estimated_rewards_by_reg_model: numpy.ndarray)→ float

Estimate policy value of an evaluation policy.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

Returns V_hat – Estimated policy value by the DR estimator.

Return type float

class obp.ope.estimators.SelfNormalizedInverseProbabilityWeighting(estimator_name:
str =
'snipw')

Bases: obp.ope.estimators.InverseProbabilityWeighting

Estimate the policy value by Self-Normalized Inverse Probability Weighting (SNIPW).

Note: Self-Normalized Inverse Probability Weighting (SNIPW) estimates the policy value of a given evaluation
policy 𝜋𝑒 by

𝑉SNIPW(𝜋𝑒;𝒟) :=
E𝒟[𝑤(𝑥𝑡, 𝑎𝑡)𝑟𝑡]

E𝒟[𝑤(𝑥𝑡, 𝑎𝑡)]
,

where 𝒟 = {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 is logged bandit feedback data with 𝑇 rounds collected by a behavior policy 𝜋𝑏.
𝑤(𝑥, 𝑎) := 𝜋𝑒(𝑎|𝑥)/𝜋𝑏(𝑎|𝑥) is the importance weight given 𝑥 and 𝑎. E𝒟[·] is the empirical average over 𝑇
observations in 𝒟.

SNIPW re-weights the observed rewards by the self-normalized importance weihgt. This estimator is not un-
biased even when the behavior policy is known. However, it is still consistent for the true policy value and
increases the stability in some senses. See the references for the detailed discussions.

Parameters estimator_name (str, default=’snipw’.) – Name of off-policy estimator.
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References

Adith Swaminathan and Thorsten Joachims. “The Self-normalized Estimator for Counterfactual Learning.”,
2015.

Nathan Kallus and Masatoshi Uehara. “Intrinsically Efficient, Stable, and Bounded Off-Policy Evaluation for
Reinforcement Learning.”, 2019.

estimate_interval(reward: numpy.ndarray, action: numpy.ndarray, position: numpy.ndarray,
pscore: numpy.ndarray, action_dist: numpy.ndarray, alpha: float = 0.05,
n_bootstrap_samples: int = 10000, random_state: Optional[int] = None,
**kwargs)→ Dict[str, float]

Estimate confidence interval of policy value by nonparametric bootstrap procedure.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the
bootstrap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-
lower confidence bounds.

Return type Dict[str, float]

estimate_policy_value(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray,
**kwargs)→ numpy.ndarray

Estimate policy value of an evaluation policy.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).
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Returns V_hat – Estimated policy value (performance) of a given evaluation policy.

Return type float

class obp.ope.estimators.SwitchDoublyRobust(estimator_name: str = 'switch-dr', tau: float
= 1)

Bases: obp.ope.estimators.DoublyRobust

Estimate the policy value by Switch Doubly Robust (Switch-DR).

Note: Switch-DR aims to reduce the variance of the DR estimator by using direct method when the importance
weight is large. This estimator estimates the policy value of a given evaluation policy 𝜋𝑒 by

𝑉SwitchDR(𝜋𝑒;𝒟, 𝑞, 𝜏) := E𝒟[𝑞(𝑥𝑡, 𝜋𝑒) + 𝑤(𝑥𝑡, 𝑎𝑡)(𝑟𝑡 − 𝑞(𝑥𝑡, 𝑎𝑡))I{𝑤(𝑥𝑡, 𝑎𝑡) ≤ 𝜏}],

where 𝒟 = {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 is logged bandit feedback data with 𝑇 rounds collected by a behavior policy
𝜋𝑏. 𝑤(𝑥, 𝑎) := 𝜋𝑒(𝑎|𝑥)/𝜋𝑏(𝑎|𝑥) is the importance weight given 𝑥 and 𝑎. E𝒟[·] is the empirical average
over 𝑇 observations in 𝒟. 𝜏(≥ 0) is a switching hyperparameter, which decides the threshold for the im-
portance weight. 𝑞(𝑥, 𝑎) is an estimated expected reward given 𝑥 and 𝑎. 𝑞(𝑥𝑡, 𝜋) := E𝑎∼𝜋(𝑎|𝑥)[𝑞(𝑥, 𝑎)] is
the expectation of the estimated reward function over 𝜋. To estimate the mean reward function, please use
obp.ope.regression_model.RegressionModel.

Parameters

• tau (float, default=1) – Switching hyperparameter. When importance weight is larger than
this parameter, the DM estimator is applied, otherwise the DR estimator is applied. This
hyperparameter should be larger than or equal to 0., otherwise it is meaningless.

• estimator_name (str, default=’switch-dr’.) – Name of off-policy estimator.

References

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. “Doubly Robust Policy Evaluation and Opti-
mization.”, 2014.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudík. “Optimal and Adaptive Off-policy Evaluation in Con-
textual Bandits”, 2016.

estimate_interval(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray, es-
timated_rewards_by_reg_model: numpy.ndarray, alpha: float = 0.05,
n_bootstrap_samples: int = 10000, random_state: Optional[int] = None,
**kwargs)→ Dict[str, float]

Estimate confidence interval of policy value by nonparametric bootstrap procedure.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).
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• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the
bootstrap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-
lower confidence bounds.

Return type Dict[str, float]

estimate_policy_value(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray,
estimated_rewards_by_reg_model: numpy.ndarray)→ float

Estimate policy value of an evaluation policy.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

Returns V_hat – Estimated policy value by the DR estimator.

Return type float

class obp.ope.estimators.SwitchInverseProbabilityWeighting(estimator_name: str =
'switch-ipw', tau: float
= 1)

Bases: obp.ope.estimators.DoublyRobust

Estimate the policy value by Switch Inverse Probability Weighting (Switch-IPW).

Note: Switch-IPW aims to reduce the variance of the IPW estimator by using direct method when the impor-
tance weight is large. This estimator estimates the policy value of a given evaluation policy 𝜋𝑒 by

𝑉SwitchIPW(𝜋𝑒;𝒟, 𝜏)

:= E𝒟

[︃∑︁
𝑎∈𝒜

𝑞(𝑥𝑡, 𝑎)𝜋𝑒(𝑎|𝑥𝑡)I{𝑤(𝑥𝑡, 𝑎) > 𝜏} + 𝑤(𝑥𝑡, 𝑎𝑡)𝑟𝑡I{𝑤(𝑥𝑡, 𝑎𝑡) ≤ 𝜏}

]︃
,
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where 𝒟 = {(𝑥𝑡, 𝑎𝑡, 𝑟𝑡)}𝑇𝑡=1 is logged bandit feedback data with 𝑇 rounds collected by a behavior policy
𝜋𝑏. 𝑤(𝑥, 𝑎) := 𝜋𝑒(𝑎|𝑥)/𝜋𝑏(𝑎|𝑥) is the importance weight given 𝑥 and 𝑎. E𝒟[·] is the empirical average over
𝑇 observations in 𝒟. 𝜏(≥ 0) is a switching hyperparameter, which decides the threshold for the importance
weight. To estimate the mean reward function, please use obp.ope.regression_model.RegressionModel.

Parameters

• tau (float, default=1) – Switching hyperparameter. When importance weight is larger than
this parameter, the DM estimator is applied, otherwise the IPW estimator is applied. This
hyperparameter should be larger than 1., otherwise it is meaningless.

• estimator_name (str, default=’switch-ipw’.) – Name of off-policy estimator.

References

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. “Doubly Robust Policy Evaluation and Opti-
mization.”, 2014.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav Dudík. “Optimal and Adaptive Off-policy Evaluation in Con-
textual Bandits”, 2016.

estimate_interval(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray, es-
timated_rewards_by_reg_model: numpy.ndarray, alpha: float = 0.05,
n_bootstrap_samples: int = 10000, random_state: Optional[int] = None,
**kwargs)→ Dict[str, float]

Estimate confidence interval of policy value by nonparametric bootstrap procedure.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the
bootstrap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-
lower confidence bounds.

Return type Dict[str, float]
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estimate_policy_value(reward: numpy.ndarray, action: numpy.ndarray, position:
numpy.ndarray, pscore: numpy.ndarray, action_dist: numpy.ndarray,
estimated_rewards_by_reg_model: numpy.ndarray)→ float

Estimate policy value of an evaluation policy.

Parameters

• reward (array-like, shape (n_rounds,)) – Reward observed in each round of the logged
bandit feedback, i.e., 𝑟𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• position (array-like, shape (n_rounds,)) – Positions of each round in the given logged
bandit feedback.

• pscore (array-like, shape (n_rounds,)) – Action choice probabilities by a behavior policy
(propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list)) –
Expected rewards for each round, action, and position estimated by a regression model,
i.e., 𝑞(𝑥𝑡, 𝑎𝑡).

Returns V_hat – Estimated policy value by the DR estimator.

Return type float

obp.ope.meta

Off-Policy Evaluation Class to Streamline OPE.

Classes

OffPolicyEvaluation(bandit_feedback, . . . ) Class to conduct off-policy evaluation by multiple off-
policy estimators simultaneously.

class obp.ope.meta.OffPolicyEvaluation(bandit_feedback: Dict[str, Union[int,
numpy.ndarray]], ope_estimators:
List[obp.ope.estimators.BaseOffPolicyEstimator])

Bases: object

Class to conduct off-policy evaluation by multiple off-policy estimators simultaneously.

Parameters

• bandit_feedback (BanditFeedback) – Logged bandit feedback data used for off-policy eval-
uation.

• ope_estimators (List[BaseOffPolicyEstimator]) – List of OPE estimators used to eval-
uate the policy value of evaluation policy. Estimators must follow the interface of
obp.ope.BaseOffPolicyEstimator.
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Examples

# a case for implementing OPE of the BernoulliTS policy
# using log data generated by the Random policy
>>> from obp.dataset import OpenBanditDataset
>>> from obp.policy import BernoulliTS
>>> from obp.ope import OffPolicyEvaluation, InverseProbabilityWeighting as IPW

# (1) Data loading and preprocessing
>>> dataset = OpenBanditDataset(behavior_policy='random', campaign='all')
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback()
>>> bandit_feedback.keys()
dict_keys(['n_rounds', 'n_actions', 'action', 'position', 'reward', 'pscore',
→˓'context', 'action_context'])

# (2) Off-Policy Learning
>>> evaluation_policy = BernoulliTS(

n_actions=dataset.n_actions,
len_list=dataset.len_list,
is_zozotown_prior=True, # replicate the policy in the ZOZOTOWN production
campaign="all",
random_state=12345

)
>>> action_dist = evaluation_policy.compute_batch_action_dist(

n_sim=100000, n_rounds=bandit_feedback["n_rounds"]
)

# (3) Off-Policy Evaluation
>>> ope = OffPolicyEvaluation(bandit_feedback=bandit_feedback, ope_
→˓estimators=[IPW()])
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)
>>> estimated_policy_value
{'ipw': 0.004553...}

# policy value improvement of BernoulliTS over the Random policy estimated by IPW
>>> estimated_policy_value_improvement = estimated_policy_value['ipw'] / bandit_
→˓feedback['reward'].mean()
# our OPE procedure suggests that BernoulliTS improves Random by 19.81%
>>> print(estimated_policy_value_improvement)
1.198126...

estimate_intervals(action_dist: numpy.ndarray, estimated_rewards_by_reg_model: Op-
tional[numpy.ndarray] = None, alpha: float = 0.05, n_bootstrap_samples:
int = 100, random_state: Optional[int] = None)→ Dict[str, Dict[str, float]]

Estimate confidence intervals of estimated policy values using a nonparametric bootstrap procedure.

Parameters

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list),
default=None) – Expected rewards for each round, action, and position estimated by a
regression model, i.e., 𝑞(𝑥𝑡, 𝑎𝑡). When it is not given, model-dependent estimators such
as DM and DR cannot be used.

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=100) – Number of resampling performed in the boot-
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strap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns policy_value_interval_dict – Dictionary containing confidence intervals of estimated
policy value estimated using a nonparametric bootstrap procedure.

Return type Dict[str, Dict[str, float]]

estimate_policy_values(action_dist: numpy.ndarray, estimated_rewards_by_reg_model: Op-
tional[numpy.ndarray] = None)→ Dict[str, float]

Estimate policy value of an evaluation policy.

Parameters

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list),
default=None) – Expected rewards for each round, action, and position estimated by a
regression model, i.e., 𝑞(𝑥𝑡, 𝑎𝑡). When None is given, model-dependent estimators such
as DM and DR cannot be used.

Returns policy_value_dict – Dictionary containing estimated policy values by OPE estimators.

Return type Dict[str, float]

evaluate_performance_of_estimators(ground_truth_policy_value: float, action_dist:
numpy.ndarray, estimated_rewards_by_reg_model:
Optional[numpy.ndarray] = None, metric: str =
'relative-ee')→ Dict[str, float]

Evaluate estimation performances of OPE estimators.

Note: Evaluate the estimation performances of OPE estimators by relative estimation error (relative-EE)
or squared error (SE):

Relative-EE(𝑉 ;𝒟) =

⃒⃒⃒⃒
⃒𝑉 (𝜋;𝒟) − 𝑉 (𝜋)

𝑉 (𝜋)

⃒⃒⃒⃒
⃒ ,

SE(𝑉 ;𝒟) =
(︁
𝑉 (𝜋;𝒟) − 𝑉 (𝜋)

)︁2

,

where 𝑉 (𝜋) is the ground-truth policy value of the evalation policy 𝜋𝑒 (often estimated using on-policy
estimation). 𝑉 (𝜋;𝒟) is an estimated policy value by an OPE estimator 𝑉 and logged bandit feedback 𝒟.

Parameters

• ground_truth policy value (float) – Ground_truth policy value of an evaluation policy,
i.e., 𝑉 (𝜋). With Open Bandit Dataset, in general, we use an on-policy estimate of the
policy value as its ground-truth.

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list),
default=None) – Expected rewards for each round, action, and position estimated by a
regression model, i.e., 𝑞(𝑥𝑡, 𝑎𝑡). When it is not given, model-dependent estimators such
as DM and DR cannot be used.

• metric (str, default=”relative-ee”) – Evaluation metric to evaluate and compare the esti-
mation performance of OPE estimators. Must be “relative-ee” or “se”.

40 Chapter 6. Table of Contents



obp Documentation, Release latest

Returns eval_metric_ope_dict – Dictionary containing evaluation metric for evaluating the es-
timation performance of OPE estimators.

Return type Dict[str, float]

summarize_estimators_comparison(ground_truth_policy_value: float, action_dist:
numpy.ndarray, estimated_rewards_by_reg_model:
Optional[numpy.ndarray] = None, metric: str = 'relative-
ee')→ pandas.core.frame.DataFrame

Summarize performance comparisons of OPE estimators.

Parameters

• ground_truth policy value (float) – Ground_truth policy value of an evaluation policy,
i.e., 𝑉 (𝜋). With Open Bandit Dataset, in general, we use an on-policy estimate of the
policy value as ground-truth.

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list),
default=None) – Expected rewards for each round, action, and position estimated by a
regression model, i.e., 𝑞(𝑥𝑡, 𝑎𝑡). When it is not given, model-dependent estimators such
as DM and DR cannot be used.

• metric (str, default=”relative-ee”) – Evaluation metric to evaluate and compare the esti-
mation performance of OPE estimators. Must be either “relative-ee” or “se”.

Returns eval_metric_ope_df – Evaluation metric for evaluating the estimation performance of
OPE estimators.

Return type DataFrame

summarize_off_policy_estimates(action_dist: numpy.ndarray, esti-
mated_rewards_by_reg_model: Optional[numpy.ndarray]
= None, alpha: float = 0.05, n_bootstrap_samples:
int = 100, random_state: Optional[int] = None)
→ Tuple[pandas.core.frame.DataFrame, pan-
das.core.frame.DataFrame]

Summarize policy values estimated by OPE estimators and their confidence intervals.

Parameters

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list),
default=None) – Expected rewards for each round, action, and position estimated by a
regression model, i.e., 𝑞(𝑥𝑡, 𝑎𝑡). When it is not given, model-dependent estimators such
as DM and DR cannot be used.

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=100) – Number of resampling performed in the boot-
strap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns (policy_value_df, policy_value_interval_df) – Estimated policy values and their con-
fidence intervals by OPE estimators.

Return type Tuple[DataFrame, DataFrame]
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visualize_off_policy_estimates(action_dist: numpy.ndarray, esti-
mated_rewards_by_reg_model: Optional[numpy.ndarray]
= None, alpha: float = 0.05, is_relative: bool = False,
n_bootstrap_samples: int = 100, random_state: Op-
tional[int] = None, fig_dir: Optional[pathlib.Path] =
None, fig_name: str = 'estimated_policy_value.png') →
None

Visualize policy values estimated by OPE estimators.

Parameters

• action_dist (array-like, shape (n_rounds, n_actions, len_list)) – Action choice probabili-
ties by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡).

• estimated_rewards_by_reg_model (array-like, shape (n_rounds, n_actions, len_list),
default=None) – Expected rewards for each round, action, and position estimated by a
regression model, i.e., 𝑞(𝑥𝑡, 𝑎𝑡). When it is not given, model-dependent estimators such
as DM and DR cannot be used.

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=100) – Number of resampling performed in the boot-
strap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

• is_relative (bool, default=False,) – If True, the method visualizes the estimated policy
values of evaluation policy relative to the ground-truth policy value of behavior policy.

• fig_dir (Path, default=None) – Path to store the bar figure. If ‘None’ is given, the figure
will not be saved.

• fig_name (str, default=”estimated_policy_value.png”) – Name of the bar figure.

obp.ope.regression_model

Regression Model Class for Estimating Mean Reward Functions.

Classes

RegressionModel(base_model, n_actions, . . . ) Machine learning model to estimate the mean reward
function (𝑞(𝑥, 𝑎) := E[𝑟|𝑥, 𝑎]).

class obp.ope.regression_model.RegressionModel(base_model:
sklearn.base.BaseEstimator, n_actions:
int, len_list: int = 1, action_context:
Optional[numpy.ndarray] = None,
fitting_method: str = 'normal')

Bases: sklearn.base.BaseEstimator

Machine learning model to estimate the mean reward function (𝑞(𝑥, 𝑎) := E[𝑟|𝑥, 𝑎]).

Note: Reward (or outcome) 𝑟 must be either binary or continuous.

Parameters
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• base_model (BaseEstimator) – A machine learning model used to estimate the mean reward
function.

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• action_context (array-like, shape (n_actions, dim_action_context), default=None) – Con-
text vector characterizing each action, vector representation of each action. If not given,
then one-hot encoding of the action variable is automatically used.

• fitting_method (str, default=’normal’) – Method to fit the regression model. Must be one
of [‘normal’, ‘iw’, ‘mrdr’] where ‘iw’ stands for importance weighting and ‘mrdr’ stands
for more robust doubly robust.

References

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. “More Robust Doubly Robust Off-policy
Evaluation.”, 2018.

Yi Su, Maria Dimakopoulou, Akshay Krishnamurthy, and Miroslav Dudik. “Doubly Robust Off-Policy Evalu-
ation with Shrinkage.”, 2020.

Yusuke Narita, Shota Yasui, and Kohei Yata. “Off-policy Bandit and Reinforcement Learning.”, 2020.

fit(context: numpy.ndarray, action: numpy.ndarray, reward: numpy.ndarray, pscore: Op-
tional[numpy.ndarray] = None, position: Optional[numpy.ndarray] = None, action_dist: Op-
tional[numpy.ndarray] = None)→ None
Fit the regression model on given logged bandit feedback data.

Parameters

• context (array-like, shape (n_rounds, dim_context)) – Context vectors in each round, i.e.,
𝑥𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• reward (array-like, shape (n_rounds,)) – Observed rewards (or outcome) in each round,
i.e., 𝑟𝑡.

• pscore (array-like, shape (n_rounds,), default=None) – Action choice probabilities
(propensity score) of a behavior policy in the training logged bandit feedback. When
None is given, the the behavior policy is assumed to be a uniform one.

• position (array-like, shape (n_rounds,), default=None) – Positions of each round in the
given logged bandit feedback. If None is set, a regression model assumes that there is only
one position. When len_list > 1, this position argument has to be set.

• action_dist (array-like, shape (n_rounds, n_actions, len_list), default=None) – Action
choice probabilities by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡). When
either of ‘iw’ or ‘mrdr’ is used as the ‘fitting_method’ argument, then action_dist must be
given.

fit_predict(context: numpy.ndarray, action: numpy.ndarray, reward: numpy.ndarray, pscore:
Optional[numpy.ndarray] = None, position: Optional[numpy.ndarray] = None, ac-
tion_dist: Optional[numpy.ndarray] = None, n_folds: int = 1, random_state: Op-
tional[int] = None)→ None

Fit the regression model on given logged bandit feedback data and predict the reward function of the same
data.
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Note: When n_folds is larger than 1, then the cross-fitting procedure is applied. See the reference for the
details about the cross-fitting technique.

Parameters

• context (array-like, shape (n_rounds, dim_context)) – Context vectors in each round, i.e.,
𝑥𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• reward (array-like, shape (n_rounds,)) – Observed rewards (or outcome) in each round,
i.e., 𝑟𝑡.

• pscore (array-like, shape (n_rounds,), default=None) – Action choice probabilities
(propensity score) of a behavior policy in the training logged bandit feedback. When
None is given, the the behavior policy is assumed to be a uniform one.

• position (array-like, shape (n_rounds,), default=None) – Positions of each round in the
given logged bandit feedback. If None is set, a regression model assumes that there is only
one position. When len_list > 1, this position argument has to be set.

• action_dist (array-like, shape (n_rounds, n_actions, len_list), default=None) – Action
choice probabilities by the evaluation policy (can be deterministic), i.e., 𝜋𝑒(𝑎𝑡|𝑥𝑡). When
either of ‘iw’ or ‘mrdr’ is used as the ‘fitting_method’ argument, then action_dist must be
given.

• n_folds (int, default=1) – Number of folds in the cross-fitting procedure. When 1 is given,
the regression model is trained on the whole logged bandit feedback data.

• random_state (int, default=None) – random_state affects the ordering of the indices,
which controls the randomness of each fold. See https://scikit-learn.org/stable/modules/
generated/sklearn.model_selection.KFold.html for the details.

Returns estimated_rewards_by_reg_model – Estimated expected rewards for new data by the
regression model.

Return type array-like, shape (n_rounds, n_actions, len_list)

get_params(deep=True)
Get parameters for this estimator.

Parameters deep (bool, default=True) – If True, will return the parameters for this estimator
and contained subobjects that are estimators.

Returns params – Parameter names mapped to their values.

Return type mapping of string to any

predict(context: numpy.ndarray)→ numpy.ndarray
Predict the mean reward function.

Parameters context (array-like, shape (n_rounds_of_new_data, dim_context)) – Context vec-
tors for new data.

Returns estimated_rewards_by_reg_model – Estimated expected rewards for new data by the
regression model.

Return type array-like, shape (n_rounds_of_new_data, n_actions, len_list)
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set_params(**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component
of a nested object.

Parameters **params (dict) – Estimator parameters.

Returns self – Estimator instance.

Return type object

6.8.2 policy module

obp.policy.base Base Interfaces for Bandit Algorithms.
obp.policy.contextfree Context-Free Bandit Algorithms.
obp.policy.linear Contextual Linear Bandit Algorithms.
obp.policy.logistic Contextual Logistic Bandit Algorithms.
obp.policy.offline Offline Bandit Algorithms.

obp.policy.base

Base Interfaces for Bandit Algorithms.

Classes

BaseContextFreePolicy(n_actions, len_list,
. . . )

Base class for context-free bandit policies.

BaseContextualPolicy(dim, n_actions, . . . ) Base class for contextual bandit policies.
BaseOfflinePolicyLearner(n_actions,
len_list)

Base Class for off-policy learners.

class obp.policy.base.BaseContextFreePolicy(n_actions: int, len_list: int = 1, batch_size:
int = 1, random_state: Optional[int] =
None)

Bases: object

Base class for context-free bandit policies.

Parameters

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• random_state (int, default=None) – Controls the random seed in sampling actions.

initialize()→ None
Initialize Parameters.

abstract select_action()→ numpy.ndarray
Select a list of actions.
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abstract update_params(action: int, reward: float)→ None
Update policy parameters.

property policy_type
Type of the bandit policy.

class obp.policy.base.BaseContextualPolicy(dim: int, n_actions: int, len_list: int = 1,
batch_size: int = 1, alpha_: float = 1.0,
lambda_: float = 1.0, random_state: Op-
tional[int] = None)

Bases: object

Base class for contextual bandit policies.

Parameters

• dim (int) – Number of dimensions of context vectors.

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• alpha_ (float, default=1.) – Prior parameter for the online logistic regression.

• lambda_ (float, default=1.) – Regularization hyperparameter for the online logistic regres-
sion.

• random_state (int, default=None) – Controls the random seed in sampling actions.

initialize()→ None
Initialize policy parameters.

abstract select_action(context: numpy.ndarray)→ numpy.ndarray
Select a list of actions.

abstract update_params(action: float, reward: float, context: numpy.ndarray)→ None
Update policy parameters.

property policy_type
Type of the bandit policy.

class obp.policy.base.BaseOfflinePolicyLearner(n_actions: int, len_list: int = 1)
Bases: object

Base Class for off-policy learners.

Parameters

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

abstract fit()→ None
Fits an offline bandit policy using the given logged bandit feedback data.

abstract predict(context: numpy.ndarray)→ numpy.ndarray
Predict best action for new data.

Parameters context (array-like, shape (n_rounds_of_new_data, dim_context)) – Context vec-
tors for new data.

Returns action – Action choices by a policy trained by calling the fit method.
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Return type array-like, shape (n_rounds_of_new_data, n_actions, len_list)

property policy_type
Type of the bandit policy.

obp.policy.contextfree

Context-Free Bandit Algorithms.

Classes

BernoulliTS(n_actions, len_list, batch_size, . . . ) Bernoulli Thompson Sampling Policy
EpsilonGreedy(n_actions, len_list, . . . ) Epsilon Greedy policy.
Random(n_actions, len_list, batch_size, . . . ) Random policy

class obp.policy.contextfree.BernoulliTS(n_actions: int, len_list: int = 1, batch_size:
int = 1, random_state: Optional[int] = None,
alpha: Optional[numpy.ndarray] = None,
beta: Optional[numpy.ndarray] = None,
is_zozotown_prior: bool = False, campaign:
Optional[str] = None, policy_name: str = 'bts')

Bases: obp.policy.base.BaseContextFreePolicy

Bernoulli Thompson Sampling Policy

Parameters

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• random_state (int, default=None) – Controls the random seed in sampling actions.

• alpha (array-like, shape (n_actions, ), default=None) – Prior parameter vector for Beta
distributions.

• beta (array-like, shape (n_actions, ), default=None) – Prior parameter vector for Beta dis-
tributions.

• is_zozotown_prior (bool, default=False) – Whether to use hyperparameters for the beta
distribution used at the start of the data collection period in ZOZOTOWN.

• campaign (str, default=None) – One of the three possible campaigns considered in ZOZO-
TOWN, “all”, “men”, and “women”.

• policy_name (str, default=’bts’) – Name of bandit policy.

compute_batch_action_dist(n_rounds: int = 1, n_sim: int = 100000)→ numpy.ndarray
Compute the distribution over actions by Monte Carlo simulation.

Parameters

• n_rounds (int, default=1) – Number of rounds in the distribution over actions. (the size
of the first axis of action_dist)

• n_sim (int, default=100000) – Number of simulations in the Monte Carlo simulation to
compute the distribution over actions.
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Returns action_dist – Probability estimates of each arm being the best one for each sample,
action, and position.

Return type array-like, shape (n_rounds, n_actions, len_list)

initialize()→ None
Initialize Parameters.

select_action()→ numpy.ndarray
Select a list of actions.

Returns selected_actions – List of selected actions.

Return type array-like, shape (len_list, )

update_params(action: int, reward: float)→ None
Update policy parameters.

Parameters

• action (int) – Selected action by the policy.

• reward (float) – Observed reward for the chosen action and position.

property policy_type
Type of the bandit policy.

class obp.policy.contextfree.EpsilonGreedy(n_actions: int, len_list: int = 1, batch_size:
int = 1, random_state: Optional[int] = None,
epsilon: float = 1.0, policy_name: str =
'egreedy_1.0')

Bases: obp.policy.base.BaseContextFreePolicy

Epsilon Greedy policy.

Parameters

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• random_state (int, default=None) – Controls the random seed in sampling actions.

• epsilon (float, default=1.) – Exploration hyperparameter that must take value in the range
of [0., 1.].

• policy_name (str, default=f’egreedy_{epsilon}’.) – Name of bandit policy.

initialize()→ None
Initialize Parameters.

select_action()→ numpy.ndarray
Select a list of actions.

Returns selected_actions – List of selected actions.

Return type array-like, shape (len_list, )

update_params(action: int, reward: float)→ None
Update policy parameters.

Parameters

• action (int) – Selected action by the policy.
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• reward (float) – Observed reward for the chosen action and position.

property policy_type
Type of the bandit policy.

class obp.policy.contextfree.Random(n_actions: int, len_list: int = 1, batch_size: int = 1, ran-
dom_state: Optional[int] = None, epsilon: float = 1.0,
policy_name: str = 'random')

Bases: obp.policy.contextfree.EpsilonGreedy

Random policy

Parameters

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• random_state (int, default=None) – Controls the random seed in sampling actions.

• epsilon (float, default=1.) – Exploration hyperparameter that must take value in the range
of [0., 1.].

• policy_name (str, default=’random’.) – Name of bandit policy.

compute_batch_action_dist(n_rounds: int = 1, n_sim: int = 100000)→ numpy.ndarray
Compute the distribution over actions by Monte Carlo simulation.

Parameters n_rounds (int, default=1) – Number of rounds in the distribution over actions. (the
size of the first axis of action_dist)

Returns action_dist – Probability estimates of each arm being the best one for each sample,
action, and position.

Return type array-like, shape (n_rounds, n_actions, len_list)

initialize()→ None
Initialize Parameters.

select_action()→ numpy.ndarray
Select a list of actions.

Returns selected_actions – List of selected actions.

Return type array-like, shape (len_list, )

update_params(action: int, reward: float)→ None
Update policy parameters.

Parameters

• action (int) – Selected action by the policy.

• reward (float) – Observed reward for the chosen action and position.

property policy_type
Type of the bandit policy.
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obp.policy.linear

Contextual Linear Bandit Algorithms.

Classes

LinEpsilonGreedy(dim, n_actions, len_list, . . . ) Linear Epsilon Greedy.
LinTS(dim, n_actions, len_list, batch_size, . . . ) Linear Thompson Sampling.
LinUCB(dim, n_actions, len_list, batch_size, . . . ) Linear Upper Confidence Bound.

class obp.policy.linear.LinEpsilonGreedy(dim: int, n_actions: int, len_list: int = 1,
batch_size: int = 1, alpha_: float = 1.0, lambda_:
float = 1.0, random_state: Optional[int] = None,
epsilon: float = 0.0)

Bases: obp.policy.base.BaseContextualPolicy

Linear Epsilon Greedy.

Parameters

• dim (int) – Number of dimensions of context vectors.

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• n_trial (int, default=0) – Current number of trials in a bandit simulation.

• random_state (int, default=None) – Controls the random seed in sampling actions.

• epsilon (float, default=0.) – Exploration hyperparameter that must take value in the range
of [0., 1.].

References

L. Li, W. Chu, J. Langford, and E. Schapire. A contextual-bandit approach to personalized news article rec-
ommendation. In Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM,
2010.

initialize()→ None
Initialize policy parameters.

select_action(context: numpy.ndarray)→ numpy.ndarray
Select action for new data.

Parameters context (array-like, shape (1, dim_context)) – Observed context vector.

Returns selected_actions – List of selected actions.

Return type array-like, shape (len_list, )

update_params(action: int, reward: float, context: numpy.ndarray)→ None
Update policy parameters.

Parameters

• action (int) – Selected action by the policy.
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• reward (float) – Observed reward for the chosen action and position.

• context (array-like, shape (1, dim_context)) – Observed context vector.

property policy_type
Type of the bandit policy.

class obp.policy.linear.LinTS(dim: int, n_actions: int, len_list: int = 1, batch_size: int = 1,
alpha_: float = 1.0, lambda_: float = 1.0, random_state: Op-
tional[int] = None)

Bases: obp.policy.base.BaseContextualPolicy

Linear Thompson Sampling.

Parameters

• dim (int) – Number of dimensions of context vectors.

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• alpha_ (float, default=1.) – Prior parameter for the online logistic regression.

• random_state (int, default=None) – Controls the random seed in sampling actions.

initialize()→ None
Initialize policy parameters.

select_action(context: numpy.ndarray)→ numpy.ndarray
Select action for new data.

Parameters context (array-like, shape (1, dim_context)) – Observed context vector.

Returns selected_actions – List of selected actions.

Return type array-like, shape (len_list, )

update_params(action: int, reward: float, context: numpy.ndarray)→ None
Update policy parameters.

Parameters

• action (int) – Selected action by the policy.

• reward (float) – Observed reward for the chosen action and position.

• context (array-like, shape (1, dim_context)) – Observed context vector.

property policy_type
Type of the bandit policy.

class obp.policy.linear.LinUCB(dim: int, n_actions: int, len_list: int = 1, batch_size: int = 1,
alpha_: float = 1.0, lambda_: float = 1.0, random_state: Op-
tional[int] = None, epsilon: float = 0.0)

Bases: obp.policy.base.BaseContextualPolicy

Linear Upper Confidence Bound.

Parameters

• dim (int) – Number of dimensions of context vectors.

• n_actions (int) – Number of actions.
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• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• random_state (int, default=None) – Controls the random seed in sampling actions.

• epsilon (float, default=0.) – Exploration hyperparameter that must take value in the range
of [0., 1.].

References

L. Li, W. Chu, J. Langford, and E. Schapire. A contextual-bandit approach to personalized news article rec-
ommendation. In Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM,
2010.

initialize()→ None
Initialize policy parameters.

select_action(context: numpy.ndarray)→ numpy.ndarray
Select action for new data.

Parameters context (array) – Observed context vector.

Returns selected_actions – List of selected actions.

Return type array-like, shape (len_list, )

update_params(action: int, reward: float, context: numpy.ndarray)→ None
Update policy parameters.

Parameters

• action (int) – Selected action by the policy.

• reward (float) – Observed reward for the chosen action and position.

• context (array-like, shape (1, dim_context)) – Observed context vector.

property policy_type
Type of the bandit policy.

obp.policy.logistic

Contextual Logistic Bandit Algorithms.

Classes

LogisticEpsilonGreedy(dim, n_actions, . . . ) Logistic Epsilon Greedy.
LogisticTS(dim, n_actions, len_list, . . . ) Logistic Thompson Sampling.
LogisticUCB(dim, n_actions, len_list, . . . ) Logistic Upper Confidence Bound.
MiniBatchLogisticRegression(lambda_, al-
pha, . . . )

MiniBatch Online Logistic Regression Model.
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class obp.policy.logistic.LogisticEpsilonGreedy(dim: int, n_actions: int, len_list: int
= 1, batch_size: int = 1, alpha_: float
= 1.0, lambda_: float = 1.0, ran-
dom_state: Optional[int] = None, ep-
silon: float = 0.0)

Bases: obp.policy.base.BaseContextualPolicy

Logistic Epsilon Greedy.

Parameters

• dim (int) – Number of dimensions of context vectors.

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• alpha_ (float, default=1.) – Prior parameter for the online logistic regression.

• lambda_ (float, default=1.) – Regularization hyperparameter for the online logistic regres-
sion.

• random_state (int, default=None) – Controls the random seed in sampling actions.

• epsilon (float, default=0.) – Exploration hyperparameter that must take value in the range
of [0., 1.].

initialize()→ None
Initialize policy parameters.

select_action(context: numpy.ndarray)→ numpy.ndarray
Select action for new data.

Parameters context (array-like, shape (1, dim_context)) – Observed context vector.

Returns selected_actions – List of selected actions.

Return type array-like, shape (len_list, )

update_params(action: int, reward: float, context: numpy.ndarray)→ None
Update policy parameters.

Parameters

• action (int) – Selected action by the policy.

• reward (float) – Observed reward for the chosen action and position.

• context (array-like, shape (1, dim_context)) – Observed context vector.

property policy_type
Type of the bandit policy.

class obp.policy.logistic.LogisticTS(dim: int, n_actions: int, len_list: int = 1, batch_size:
int = 1, alpha_: float = 1.0, lambda_: float = 1.0, ran-
dom_state: Optional[int] = None, policy_name: str =
'logistic_ts')

Bases: obp.policy.base.BaseContextualPolicy

Logistic Thompson Sampling.

Parameters

• dim (int) – Number of dimensions of context vectors.
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• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• alpha_ (float, default=1.) – Prior parameter for the online logistic regression.

• lambda_ (float, default=1.) – Regularization hyperparameter for the online logistic regres-
sion.

• random_state (int, default=None) – Controls the random seed in sampling actions.

References

Olivier Chapelle and Lihong Li. “An empirical evaluation of thompson sampling,” 2011.

initialize()→ None
Initialize policy parameters.

select_action(context: numpy.ndarray)→ numpy.ndarray
Select action for new data.

Parameters context (array-like, shape (1, dim_context)) – Observed context vector.

Returns selected_actions – List of selected actions.

Return type array-like, shape (len_list, )

update_params(action: int, reward: float, context: numpy.ndarray)→ None
Update policy parameters.

Parameters

• action (int) – Selected action by the policy.

• reward (float) – Observed reward for the chosen action and position.

• context (array-like, shape (1, dim_context)) – Observed context vector.

property policy_type
Type of the bandit policy.

class obp.policy.logistic.LogisticUCB(dim: int, n_actions: int, len_list: int = 1, batch_size:
int = 1, alpha_: float = 1.0, lambda_: float = 1.0,
random_state: Optional[int] = None, epsilon: float =
0.0)

Bases: obp.policy.base.BaseContextualPolicy

Logistic Upper Confidence Bound.

Parameters

• dim (int) – Number of dimensions of context vectors.

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• batch_size (int, default=1) – Number of samples used in a batch parameter update.

• alpha_ (float, default=1.) – Prior parameter for the online logistic regression.
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• lambda_ (float, default=1.) – Regularization hyperparameter for the online logistic regres-
sion.

• random_state (int, default=None) – Controls the random seed in sampling actions.

• epsilon (float, default=0.) – Exploration hyperparameter that must take value in the range
of [0., 1.].

References

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. “A Contextual-bandit Approach to Personalized
News Article Recommendation,” 2010.

initialize()→ None
Initialize policy parameters.

select_action(context: numpy.ndarray)→ numpy.ndarray
Select action for new data.

Parameters context (array-like, shape (1, dim_context)) – Observed context vector.

Returns selected_actions – List of selected actions.

Return type array-like, shape (len_list, )

update_params(action: int, reward: float, context: numpy.ndarray)→ None
Update policy parameters.

Parameters

• action (int) – Selected action by the policy.

• reward (float) – Observed reward for the chosen action and position.

• context (array-like, shape (1, dim_context)) – Observed context vector.

property policy_type
Type of the bandit policy.

class obp.policy.logistic.MiniBatchLogisticRegression(lambda_: float, alpha: float,
dim: int, random_state: Op-
tional[int] = None)

Bases: object

MiniBatch Online Logistic Regression Model.

fit(X: numpy.ndarray, y: numpy.ndarray)
Update coefficient vector by the mini-batch data.

grad(w: numpy.ndarray, *args)→ numpy.ndarray
Calculate gradient.

loss(w: numpy.ndarray, *args)→ float
Calculate loss function.

predict_proba(X: numpy.ndarray)→ numpy.ndarray
Predict extected probability by the expected coefficient.

predict_proba_with_sampling(X: numpy.ndarray)→ numpy.ndarray
Predict extected probability by the sampled coefficient.

sample()→ numpy.ndarray
Sample coefficient vector from the prior distribution.
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sd()→ numpy.ndarray
Standard deviation for the coefficient vector.

obp.policy.offline

Offline Bandit Algorithms.

Classes

IPWLearner(n_actions, len_list, base_classifier) Off-policy learner with Inverse Probability Weighting.

class obp.policy.offline.IPWLearner(n_actions: int, len_list: int = 1, base_classifier: Op-
tional[sklearn.base.ClassifierMixin] = None)

Bases: obp.policy.base.BaseOfflinePolicyLearner

Off-policy learner with Inverse Probability Weighting.

Parameters

• n_actions (int) – Number of actions.

• len_list (int, default=1) – Length of a list of actions recommended in each impression.
When Open Bandit Dataset is used, 3 should be set.

• base_classifier (ClassifierMixin) – Machine learning classifier used to train an offline deci-
sion making policy.

References

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. “Doubly Robust Policy Evaluation and Opti-
mization.”, 2014.

Damien Lefortier, Adith Swaminathan, Xiaotao Gu, Thorsten Joachims, and Maarten de Rijke. “Large-scale
Validation of Counterfactual Learning Methods: A Test-Bed.”, 2016.

fit(context: numpy.ndarray, action: numpy.ndarray, reward: numpy.ndarray, pscore: Op-
tional[numpy.ndarray] = None, position: Optional[numpy.ndarray] = None)→ None
Fits an offline bandit policy using the given logged bandit feedback data.

Note: This fit method trains a deterministic policy 𝜋 : 𝒳 → 𝒜 via a cost-sensitive classification reduction
as follows:

�̂� ∈ arg max
𝜋∈Π

𝑉IPW(𝜋;𝒟)

= arg max
𝜋∈Π

E𝒟

[︂
I{𝜋(𝑥𝑖) = 𝑎𝑖}

𝜋𝑏(𝑎𝑖|𝑥𝑖)
𝑟𝑖

]︂
= arg min

𝜋∈Π
E𝒟

[︂
𝑟𝑖

𝜋𝑏(𝑎𝑖|𝑥𝑖)
I{𝜋(𝑥𝑖) ̸= 𝑎𝑖}

]︂
,

where E𝒟[·] is the empirical average over observations in 𝒟. See the reference for the details.

Parameters

• context (array-like, shape (n_rounds, dim_context)) – Context vectors in each round, i.e.,
𝑥𝑡.
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• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each
round of the logged bandit feedback, i.e., 𝑎𝑡.

• reward (array-like, shape (n_rounds,)) – Observed rewards (or outcome) in each round,
i.e., 𝑟𝑡.

• pscore (array-like, shape (n_rounds,), default=None) – Action choice probabilities by a
behavior policy (propensity scores), i.e., 𝜋𝑏(𝑎𝑡|𝑥𝑡).

• position (array-like, shape (n_rounds,), default=None) – Positions of each round in the
given logged bandit feedback. If None is given, a learner assumes that there is only one
position. When len_list > 1, position has to be set.

predict(context: numpy.ndarray)→ numpy.ndarray
Predict best actions for new data.

Note: Action set predicted by this predict method can contain duplicate items. If you want a non-repetitive
action set, then please use the sample_action method.

Parameters context (array-like, shape (n_rounds_of_new_data, dim_context)) – Context vec-
tors for new data.

Returns action_dist – Action choices by a classifier, which can contain duplicate items. If you
want a non-repetitive action set, please use the sample_action method.

Return type array-like, shape (n_rounds_of_new_data, n_actions, len_list)

predict_proba(context: numpy.ndarray, tau: Union[int, float] = 1.0)→ numpy.ndarray
Obtains action choice probabilities for new data based on scores predicted by a classifier.

Note: This predict_proba method obtains action choice probabilities for new data 𝑥 ∈ 𝒳 by first com-
puting non-negative scores for all possible candidate actions 𝑎 ∈ 𝒜 (where 𝒜 is an action set), and using
a Plackett-Luce ranking model as follows:

𝑃 (𝐴 = 𝑎|𝑥) =
exp(𝑓(𝑥, 𝑎)/𝜏)∑︀

𝑎′∈𝒜 exp(𝑓(𝑥, 𝑎′)/𝜏)
,

where 𝐴 is a random variable representing an action, and 𝜏 is a temperature hyperparameter. 𝑓 : 𝒳 ×𝒜 →
R+ is a scoring function which is now implemented in the predict_score method.

Note that this method can be used only when `len_list=1`, please use the `sample_action` method
otherwise.

Parameters

• context (array-like, shape (n_rounds_of_new_data, dim_context)) – Context vectors for
new data.

• tau (int or float, default=1.0) – A temperature parameter, controlling the randomness of
the action choice. As 𝜏 → ∞, the algorithm will select arms uniformly at random.

Returns choice_prob – Action choice probabilities obtained by a trained classifier.

Return type array-like, shape (n_rounds_of_new_data, n_actions, len_list)

predict_score(context: numpy.ndarray)→ numpy.ndarray
Predict non-negative scores for all possible products of action and position.
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Parameters context (array-like, shape (n_rounds_of_new_data, dim_context)) – Context vec-
tors for new data.

Returns score_predicted – Scores for all possible pairs of action and position predicted by a
classifier.

Return type array-like, shape (n_rounds_of_new_data, n_actions, len_list)

sample_action(context: numpy.ndarray, tau: Union[int, float] = 1.0, random_state: Optional[int] =
None)→ numpy.ndarray

Sample (non-repetitive) actions based on scores predicted by a classifier.

Note: This sample_action method samples a non-repetitive set of actions for new data 𝑥 ∈ 𝒳 by first
computing non-negative scores for all possible candidate products of action and position (𝑎, 𝑘) ∈ 𝒜 × 𝒦
(where 𝒜 is an action set and 𝒦 is a position set), and using softmax function as follows:

𝑃 (𝐴1 = 𝑎1|𝑥) =
exp(𝑓(𝑥, 𝑎1, 1)/𝜏)∑︀

𝑎′∈𝒜 exp(𝑓(𝑥, 𝑎′, 1)/𝜏)
,

𝑃 (𝐴2 = 𝑎2|𝐴1 = 𝑎1, 𝑥) =
exp(𝑓(𝑥, 𝑎2, 2)/𝜏)∑︀

𝑎′∈𝒜∖{𝑎1} exp(𝑓(𝑥, 𝑎′, 2)/𝜏)
, . . .

where 𝐴𝑘 is a random variable representing an action at a position 𝑘. 𝜏 is a temperature hyperparameter.
𝑓 : 𝒳 ×𝒜×𝒦 → R+ is a scoring function which is now implemented in the predict_score method.

Parameters

• context (array-like, shape (n_rounds_of_new_data, dim_context)) – Context vectors for
new data.

• tau (int or float, default=1.0) – A temperature parameter, controlling the randomness of
the action choice. As 𝜏 → ∞, the algorithm will select arms uniformly at random.

• random_state (int, default=None) – Controls the random seed in sampling actions.

Returns action – Action sampled by a trained classifier.

Return type array-like, shape (n_rounds_of_new_data, n_actions, len_list)

property policy_type
Type of the bandit policy.

6.8.3 dataset module

obp.dataset.base Abstract Base Class for Logged Bandit Feedback.
obp.dataset.real Dataset Class for Real-World Logged Bandit Feedback.
obp.dataset.synthetic Class for Generating Synthetic Logged Bandit Feed-

back.
obp.dataset.multiclass Class for Multi-Class Classification to Bandit Reduc-

tion.
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obp.dataset.base

Abstract Base Class for Logged Bandit Feedback.

Classes

BaseRealBanditDataset() Base Class for Real-World Bandit Dataset.
BaseSyntheticBanditDataset() Base Class for Synthetic Bandit Dataset.

class obp.dataset.base.BaseRealBanditDataset
Bases: object

Base Class for Real-World Bandit Dataset.

abstract load_raw_data()→ None
Load raw dataset.

abstract obtain_batch_bandit_feedback()→ None
Obtain batch logged bandit feedback.

abstract pre_process()→ None
Preprocess raw dataset.

class obp.dataset.base.BaseSyntheticBanditDataset
Bases: object

Base Class for Synthetic Bandit Dataset.

abstract obtain_batch_bandit_feedback()→ None
Obtain batch logged bandit feedback.

obp.dataset.real

Dataset Class for Real-World Logged Bandit Feedback.

Classes

OpenBanditDataset(behavior_policy, campaign,
. . . )

Class for loading and preprocessing Open Bandit
Dataset.

class obp.dataset.real.OpenBanditDataset(behavior_policy: str, campaign: str, data_path:
pathlib.Path = PosixPath('obd'), dataset_name:
str = 'obd')

Bases: obp.dataset.base.BaseRealBanditDataset

Class for loading and preprocessing Open Bandit Dataset.

Note: Users are free to implement their own feature engineering by overriding the pre_process method.

Parameters

• behavior_policy (str) – Name of the behavior policy that generated the logged bandit feed-
back data. Must be either ‘random’ or ‘bts’.
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• campaign (str) – One of the three possible campaigns considered in ZOZOTOWN, “all”,
“men”, and “women”.

• data_path (Path, default=Path(‘./obd’)) – Path that stores Open Bandit Dataset.

• dataset_name (str, default=’obd’) – Name of the dataset.

References

Yuta Saito, Shunsuke Aihara, Megumi Matsutani, Yusuke Narita. “Large-scale Open Dataset, Pipeline, and
Benchmark for Bandit Algorithms.”, 2020.

classmethod calc_on_policy_policy_value_estimate(behavior_policy: str, cam-
paign: str, data_path: path-
lib.Path = PosixPath('obd'),
test_size: float = 0.3,
is_timeseries_split: bool =
False)→ float

Calculate on-policy policy value estimate (used as a ground-truth policy value).

Parameters

• behavior_policy (str) – Name of the behavior policy that generated the log data. Must be
either ‘random’ or ‘bts’.

• campaign (str) – One of the three possible campaigns considered in ZOZOTOWN (i.e.,
“all”, “men”, and “women”).

• data_path (Path, default=Path(‘./obd’)) – Path that stores Open Bandit Dataset.

• test_size (float, default=0.3) – If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the test split.

• is_timeseries_split (bool, default=False) – If true, split the original logged badnit feed-
back data by time series.

Returns on_policy_policy_value_estimate – Policy value of the behavior policy estimated by
on-policy estimation, i.e., E𝒟[𝑟𝑡]. where E𝒟[·] is the empirical average over 𝑇 observa-
tions in 𝒟. This parameter is used as a ground-truth policy value in the evaluation of OPE
estimators.

Return type float

load_raw_data()→ None
Load raw open bandit dataset.

obtain_batch_bandit_feedback(test_size: float = 0.3, is_timeseries_split: bool = False) →
Dict[str, Union[int, numpy.ndarray]]

Obtain batch logged bandit feedback.

Parameters

• test_size (float, default=0.3) – If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the evaluation split.

• is_timeseries_split (bool, default=False) – If true, split the original logged badnit feed-
back data by time series.

Returns bandit_feedback – Batch logged bandit feedback collected by a behavior policy.

Return type BanditFeedback
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pre_process()→ None
Preprocess raw open bandit dataset.

Note: This is the default feature engineering and please overide this method to implement your own
preprocessing. see https://github.com/st-tech/zr-obp/blob/master/examples/examples_with_obd/custom_
dataset.py for example.

sample_bootstrap_bandit_feedback(test_size: float = 0.3, is_timeseries_split: bool = False,
random_state: Optional[int] = None) → Dict[str,
Union[int, numpy.ndarray]]

Obtain bootstrap logged bandit feedback.

Parameters

• test_size (float, default=0.3) – If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the evaluation split.

• is_timeseries_split (bool, default=False) – If true, split the original logged badnit feed-
back data by time series.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns bandit_feedback – Logged bandit feedback sampled independently from the original
data with replacement.

Return type BanditFeedback

property dim_context
Dimensions of context vectors.

property len_list
Length of recommendation lists.

property n_actions
Number of actions.

property n_rounds
Total number of rounds contained in the logged bandit dataset.

obp.dataset.synthetic

Class for Generating Synthetic Logged Bandit Feedback.

Functions

linear_behavior_policy(context, ac-
tion_context)

Linear contextual behavior policy for synthetic bandit
datasets.

linear_reward_function(context, ac-
tion_context)

Linear mean reward function for synthetic bandit
datasets.

logistic_reward_function(context, ac-
tion_context)

Logistic mean reward function for synthetic bandit
datasets.
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Classes

SyntheticBanditDataset(n_actions, . . . ) Class for generating synthetic bandit dataset.

class obp.dataset.synthetic.SyntheticBanditDataset(n_actions: int, dim_context:
int = 1, reward_type: str =
'binary', reward_function: Op-
tional[Callable[[numpy.ndarray,
numpy.ndarray], numpy.ndarray]]
= None, behav-
ior_policy_function: Op-
tional[Callable[[numpy.ndarray,
numpy.ndarray], numpy.ndarray]]
= None, random_state: Op-
tional[int] = None, dataset_name:
str = 'synthetic_bandit_dataset')

Bases: obp.dataset.base.BaseSyntheticBanditDataset

Class for generating synthetic bandit dataset.

Note: By calling the obtain_batch_bandit_feedback method several times, we have different bandit samples
with the same setting. This can be used to estimate confidence intervals of the performances of OPE estimators.

If None is set as behavior_policy_function, the synthetic data will be context-free bandit feedback.

Parameters

• n_actions (int) – Number of actions.

• dim_context (int, default=1) – Number of dimensions of context vectors.

• reward_type (str, default=’binary’) – Type of reward variable, must be either ‘binary’ or
‘continuous’. When ‘binary’ is given, rewards are sampled from the Bernoulli distribution.
When ‘continuous’ is given, rewards are sampled from the truncated Normal distribution
with scale=1.

• reward_function (Callable[[np.ndarray, np.ndarray], np.ndarray]], default=None) –
Function generating expected reward with context and action context vectors, i.e., 𝜇 :
𝒳 × 𝒜 → R. If None is set, context independent expected reward for each action will
be sampled from the uniform distribution automatically.

• behavior_policy_function (Callable[[np.ndarray, np.ndarray], np.ndarray], de-
fault=None) – Function generating probability distribution over action space, i.e.,
𝜋 : 𝒳 → ∆(𝒜). If None is set, context independent uniform distribution will be used
(uniform random behavior policy).

• random_state (int, default=None) – Controls the random seed in sampling synthetic bandit
dataset.

• dataset_name (str, default=’synthetic_bandit_dataset’) – Name of the dataset.
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Examples

>>> import numpy as np
>>> from obp.dataset import (

SyntheticBanditDataset,
linear_reward_function,
linear_behavior_policy

)

# generate synthetic contextual bandit feedback with 10 actions.
>>> dataset = SyntheticBanditDataset(

n_actions=10,
dim_context=5,
reward_function=logistic_reward_function,
behavior_policy=linear_behavior_policy,
random_state=12345

)
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback(n_rounds=100000)
>>> bandit_feedback
{

'n_rounds': 100000,
'n_actions': 10,
'context': array([[-0.20470766, 0.47894334, -0.51943872, -0.5557303 , 1.

→˓96578057],
[ 1.39340583, 0.09290788, 0.28174615, 0.76902257, 1.24643474],
[ 1.00718936, -1.29622111, 0.27499163, 0.22891288, 1.35291684],
...,
[ 1.36946256, 0.58727761, -0.69296769, -0.27519988, -2.10289159],
[-0.27428715, 0.52635353, 1.02572168, -0.18486381, 0.72464834],
[-1.25579833, -1.42455203, -0.26361242, 0.27928604, 1.21015571]]),

'action_context': array([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]]),

'action': array([7, 4, 0, ..., 7, 9, 6]),
'position': array([0, 0, 0, ..., 0, 0, 0]),
'reward': array([0, 1, 1, ..., 0, 1, 0]),
'expected_reward': array([[0.80210203, 0.73828559, 0.83199558, ..., 0.

→˓81190503, 0.70617705,
0.68985306],
[0.94119582, 0.93473317, 0.91345213, ..., 0.94140688, 0.93152449,
0.90132868],
[0.87248862, 0.67974991, 0.66965669, ..., 0.79229752, 0.82712978,
0.74923536],
...,
[0.64856003, 0.38145901, 0.84476094, ..., 0.40962057, 0.77114661,
0.65752798],
[0.73208527, 0.82012699, 0.78161352, ..., 0.72361416, 0.8652249 ,
0.82571751],
[0.40348366, 0.24485417, 0.24037926, ..., 0.49613133, 0.30714854,
0.5527749 ]]),

(continues on next page)
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'pscore': array([0.05423855, 0.10339675, 0.09756788, ..., 0.05423855, 0.
→˓07250876,

0.14065505])
}

obtain_batch_bandit_feedback(n_rounds: int)→ Dict[str, Union[int, numpy.ndarray]]
Obtain batch logged bandit feedback.

Parameters n_rounds (int) – Number of rounds for synthetic bandit feedback data.

Returns bandit_feedback – Generated synthetic bandit feedback dataset.

Return type BanditFeedback

sample_contextfree_expected_reward()→ numpy.ndarray
Sample expected reward for each action from the uniform distribution.

property len_list
Length of recommendation lists.

obp.dataset.synthetic.linear_behavior_policy(context: numpy.ndarray, action_context:
numpy.ndarray, random_state: Op-
tional[int] = None)→ numpy.ndarray

Linear contextual behavior policy for synthetic bandit datasets.

Parameters

• context (array-like, shape (n_rounds, dim_context)) – Context vectors characterizing each
round (such as user information).

• action_context (array-like, shape (n_actions, dim_action_context)) – Vector representation
for each action.

• random_state (int, default=None) – Controls the random seed in sampling dataset.

Returns behavior_policy – Action choice probabilities given context (𝑥), i.e., 𝜋 : 𝒳 → ∆(𝒜).

Return type array-like, shape (n_rounds, n_actions)

obp.dataset.synthetic.linear_reward_function(context: numpy.ndarray, action_context:
numpy.ndarray, random_state: Op-
tional[int] = None)→ numpy.ndarray

Linear mean reward function for synthetic bandit datasets.

Parameters

• context (array-like, shape (n_rounds, dim_context)) – Context vectors characterizing each
round (such as user information).

• action_context (array-like, shape (n_actions, dim_action_context)) – Vector representation
for each action.

• random_state (int, default=None) – Controls the random seed in sampling dataset.

Returns expected_reward – Expected reward given context (𝑥) and action (𝑎), i.e., 𝑞(𝑥, 𝑎) :=
E[𝑟|𝑥, 𝑎].

Return type array-like, shape (n_rounds, n_actions)

obp.dataset.synthetic.logistic_reward_function(context: numpy.ndarray, action_context:
numpy.ndarray, random_state: Op-
tional[int] = None)→ numpy.ndarray

Logistic mean reward function for synthetic bandit datasets.
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Parameters

• context (array-like, shape (n_rounds, dim_context)) – Context vectors characterizing each
round (such as user information).

• action_context (array-like, shape (n_actions, dim_action_context)) – Vector representation
for each action.

• random_state (int, default=None) – Controls the random seed in sampling dataset.

Returns expected_reward – Expected reward given context (𝑥) and action (𝑎), i.e., 𝑞(𝑥, 𝑎) :=
E[𝑟|𝑥, 𝑎].

Return type array-like, shape (n_rounds, n_actions)

obp.dataset.multiclass

Class for Multi-Class Classification to Bandit Reduction.

Classes

MultiClassToBanditReduction(X, y, . . . ) Class for handling multi-class classification data as
logged bandit feedback data.

class obp.dataset.multiclass.MultiClassToBanditReduction(X: numpy.ndarray,
y: numpy.ndarray,
base_classifier_b:
sklearn.base.ClassifierMixin,
alpha_b: float = 0.8,
dataset_name: Op-
tional[str] = None)

Bases: obp.dataset.base.BaseSyntheticBanditDataset

Class for handling multi-class classification data as logged bandit feedback data.

Note: A machine learning classifier such as logistic regression is used to construct behavior and evaluation
policies as follows.

1. Split the original data into training (𝒟tr) and evaluation (𝒟ev) sets.

2. Train classifiers on 𝒟tr and obtain base deterministic policies 𝜋det,𝑏 and 𝜋det,𝑒.

3. Construct behavior (𝜋𝑏) and evaluation (𝜋𝑒) policies based on 𝜋det,𝑏 and 𝜋det,𝑒 as

𝜋𝑏(𝑎|𝑥) := 𝛼𝑏 · 𝜋det,𝑏(𝑎|𝑥) + (1.0 − 𝛼𝑏) · 𝜋𝑢(𝑎|𝑥)

𝜋𝑒(𝑎|𝑥) := 𝛼𝑒 · 𝜋det,𝑒(𝑎|𝑥) + (1.0 − 𝛼𝑒) · 𝜋𝑢(𝑎|𝑥)

where 𝜋𝑢 is a uniform random policy and 𝛼𝑏 and 𝛼𝑒 are set by the user.

4. Measure the accuracy of the evaluation policy on 𝒟ev with its fully observed rewards and use it as
the evaluation policy’s ground truth policy value.

5. Using 𝒟ev, an estimator 𝑉 estimates the policy value of the evaluation policy, i.e.,
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𝑉 (𝜋𝑒) ≈ 𝑉 (𝜋𝑒;𝒟ev)

6. Evaluate the estimation performance of 𝑉 by comparing its estimate with the ground-truth policy
value.

Parameters

• X (array-like, shape (n_samples,n_features)) – Training vector of the original multi-class
classification data, where n_samples is the number of samples and n_features is the number
of features.

• y (array-like, shape (n_samples,)) – Target vector (relative to X) of the original multi-class
classification data.

• base_classifier_b (ClassifierMixin) – Machine learning classifier used to construct a behav-
ior policy.

• alpha_b (float, default=0.9) – Ration of a uniform random policy when constructing a be-
havior policy. Must be in the [0, 1) interval to make the behavior policy a stochastic one.

• dataset_name (str, default=None) – Name of the dataset.

Examples

# evaluate the estimation performance of IPW using the `digits` data in sklearn
>>> import numpy as np
>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import LogisticRegression
# import open bandit pipeline (obp)
>>> from obp.dataset import MultiClassToBanditReduction
>>> from obp.ope import OffPolicyEvaluation, InverseProbabilityWeighting as IPW

# load raw digits data
>>> X, y = load_digits(return_X_y=True)
# convert the raw classification data into the logged bandit dataset
>>> dataset = MultiClassToBanditReduction(

X=X,
y=y,
base_classifier_b=LogisticRegression(random_state=12345),
alpha_b=0.8,
dataset_name="digits",

)
# split the original data into the training and evaluation sets
>>> dataset.split_train_eval(eval_size=0.7)
# obtain logged bandit feedback generated by behavior policy
>>> bandit_feedback = dataset.obtain_batch_bandit_feedback(random_state=12345)
>>> bandit_feedback
{

'n_actions': 10,
'n_samples': 1258,
'context': array([[ 0., 0., 1., ..., 6., 0., 0.],

[ 0., 1., 14., ..., 10., 1., 0.],
[ 0., 0., 7., ..., 3., 0., 0.],
...,

(continues on next page)
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[ 0., 0., 9., ..., 5., 0., 0.],
[ 0., 2., 15., ..., 16., 13., 0.],
[ 0., 0., 3., ..., 1., 0., 0.]]),

'action': array([6, 9, 0, ..., 2, 2, 5]),
'reward': array([1., 1., 1., ..., 1., 1., 1.]),
'position': array([0, 0, 0, ..., 0, 0, 0]),
'pscore': array([0.82, 0.82, 0.82, ..., 0.82, 0.82, 0.82])

}

# obtain action choice probabilities by an evaluation policy and its ground-truth
→˓policy value
>>> action_dist = dataset.obtain_action_dist_by_eval_policy(

base_classifier_e=LogisticRegression(C=100, random_state=12345),
alpha_e=0.9,

)
>>> ground_truth = dataset.calc_ground_truth_policy_value(action_dist=action_dist)
>>> ground_truth
0.8599205087440379

# off-policy evaluation using IPW
>>> ope = OffPolicyEvaluation(bandit_feedback=bandit_feedback, ope_
→˓estimators=[IPW()])
>>> estimated_policy_value = ope.estimate_policy_values(action_dist=action_dist)
>>> estimated_policy_value
{'ipw': 0.85877699794486}

# evaluate the estimation performance (accuracy) of IPW by relative estimation
→˓error (relative-ee)
>>> relative_estimation_errors = ope.evaluate_performance_of_estimators(

ground_truth_policy_value=ground_truth,
action_dist=action_dist,

)
>>> relative_estimation_errors
{'ipw': 0.0020047333605093458}

References

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. “Doubly Robust Policy Evaluation and Opti-
mization.”, 2014.

calc_ground_truth_policy_value(action_dist: numpy.ndarray)→ numpy.ndarray
Calculate the ground-truth policy value of a given action distribution.

Parameters action_dist (array-like, shape (n_samples_ev, n_actions, 1)) – Action distribution
or action choice probabilities of a policy whose ground-truth is to be caliculated here. where
n_samples_ev is the number of samples in the evaluation set given the current train-eval
split. n_actions is the number of actions. axis 2 of action_dist represents the length of list; it
is always 1 in the current implementation.

Returns ground_truth_policy_value – policy value of a given action distribution (mostly eval-
uation policy).

Return type float

obtain_action_dist_by_eval_policy(base_classifier_e: Op-
tional[sklearn.base.ClassifierMixin] = None, alpha_e:
float = 1.0)→ numpy.ndarray
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Obtain action choice probabilities by an evaluation policy.

Parameters

• base_classifier_e (ClassifierMixin, default=None) – Machine learning classifier used to
construct a behavior policy.

• alpha_e (float, default=1.0) – Ration of a uniform random policy when constructing an
evaluation policy. Must be in the [0, 1] interval (evaluation policy can be deterministic).

Returns action_dist_by_eval_policy – action_dist_by_eval_policy is an action choice proba-
bilities by an evaluation policy. where n_samples_ev is the number of samples in the evalua-
tion set given the current train-eval split. n_actions is the number of actions. axis 2 represents
the length of list; it is always 1 in the current implementation.

Return type array-like, shape (n_samples_ev, n_actions, 1)

obtain_batch_bandit_feedback(random_state: Optional[int] = None) → Dict[str, Union[int,
numpy.ndarray]]

Obtain batch logged bandit feedback, an evaluation policy, and its ground-truth policy value.

Note: Please call self.split_train_eval() before calling this method.

Parameters

• eval_size (float or int, default=0.25) – If float, should be between 0.0 and 1.0 and represent
the proportion of the dataset to include in the test split. If int, represents the absolute
number of test samples.

• random_state (int, default=None) – Controls the random seed in sampling actions.

Returns bandit_feedback – bandit_feedback is logged bandit feedback data generated from a
multi-class classification dataset.

Return type BanditFeedback

split_train_eval(eval_size: Union[int, float] = 0.25, random_state: Optional[int] = None) →
None

Split the original data into the training (used for policy learning) and evaluation (used for OPE) sets.

Parameters

• eval_size (float or int, default=0.25) – If float, should be between 0.0 and 1.0 and represent
the proportion of the dataset to include in the evaluation split. If int, represents the absolute
number of test samples.

• random_state (int, default=None) – Controls the random seed in train-evaluation split.

property len_list
Length of recommendation lists.

property n_actions
Number of actions (number of classes).

property n_samples
Number of samples in the original multi-class classification data.
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6.8.4 simulator module

obp.simulator.simulator Bandit Simulator.

obp.simulator.simulator

Bandit Simulator.

Functions

run_bandit_simulation(bandit_feedback, pol-
icy)

Run an online bandit algorithm on the given logged ban-
dit feedback data.

obp.simulator.simulator.run_bandit_simulation(bandit_feedback: Dict[str,
Union[int, numpy.ndarray]], policy:
Union[obp.policy.base.BaseContextFreePolicy,
obp.policy.base.BaseContextualPolicy])
→ numpy.ndarray

Run an online bandit algorithm on the given logged bandit feedback data.

Parameters

• bandit_feedback (BanditFeedback) – Logged bandit feedback data used in offline bandit
simulation.

• policy (BanditPolicy) – Online bandit policy evaluated in offline bandit simulation (i.e.,
evaluation policy).

Returns action_dist – Action choice probabilities (can be deterministic).

Return type array-like, shape (n_rounds, n_actions, len_list)

6.8.5 others

obp.utils Useful Tools.

obp.utils

Useful Tools.
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Functions

check_bandit_feedback_inputs(context,
. . . [, . . . ])

Check inputs for bandit learning or simulation.

check_is_fitted(estimator[, attributes, . . . ]) Perform is_fitted validation for estimator.
convert_to_action_dist(n_actions, . . . ) Convert selected actions (output of

run_bandit_simulation) to distribution over actions.
estimate_confidence_interval_by_bootstrap(samples)Estimate confidence interval by nonparametric

bootstrap-like procedure.
sigmoid(x) Calculate sigmoid function.
softmax(x) Calculate softmax function.

obp.utils.check_bandit_feedback_inputs(context: numpy.ndarray, action: numpy.ndarray,
reward: numpy.ndarray, position: Op-
tional[numpy.ndarray] = None, pscore: Op-
tional[numpy.ndarray] = None, action_context:
Optional[numpy.ndarray] = None) → Op-
tional[AssertionError]

Check inputs for bandit learning or simulation.

Parameters

• context (array-like, shape (n_rounds, dim_context)) – Context vectors in each round, i.e.,
𝑥𝑡.

• action (array-like, shape (n_rounds,)) – Action sampled by a behavior policy in each round
of the logged bandit feedback, i.e., 𝑎𝑡.

• reward (array-like, shape (n_rounds,)) – Observed rewards (or outcome) in each round,
i.e., 𝑟𝑡.

• position (array-like, shape (n_rounds,), default=None) – Positions of each round in the
given logged bandit feedback.

• pscore (array-like, shape (n_rounds,), default=None) – Propensity scores, the probability
of selecting each action by behavior policy, in the given logged bandit feedback.

• action_context (array-like, shape (n_actions, dim_action_context)) – Context vectors char-
acterizing each action.

obp.utils.check_is_fitted(estimator: sklearn.base.BaseEstimator, attributes=None, *, msg: str =
None, all_or_any=<built-in function all>)→ bool

Perform is_fitted validation for estimator.

Note: Checks if the estimator is fitted by verifying the presence of fitted attributes (ending with a trailing
underscore) and otherwise raises a NotFittedError with the given message. This utility is meant to be used
internally by estimators themselves, typically in their own predict / transform methods.

Parameters

• estimator (estimator instance.) – estimator instance for which the check is performed.

• attributes (str, list or tuple of str, default=None) – Attribute name(s) given as string or
a list/tuple of strings Eg.: ["coef_", "estimator_", ...], "coef_" If None,
estimator is considered fitted if there exist an attribute that ends with a underscore and does
not start with double underscore.
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• msg (string) – The default error message is, “This %(name)s instance is not fitted yet.
Call ‘fit’ with appropriate arguments before using this estimator.” For custom messages if
“%(name)s” is present in the message string, it is substituted for the estimator name. Eg. :
“Estimator, %(name)s, must be fitted before sparsifying”.

• all_or_any (callable, {all, any}, default all) – Specify whether all or any of the given at-
tributes must exist.

Returns is_fitted – Whether the given estimator is fitted or not.

Return type bool

References

https://scikit-learn.org/stable/modules/generated/sklearn.utils.validation.check_is_fitted.html

obp.utils.convert_to_action_dist(n_actions: int, selected_actions: numpy.ndarray) →
numpy.ndarray

Convert selected actions (output of run_bandit_simulation) to distribution over actions.

Parameters

• n_actions (int) – Number of actions.

• selected_actions (array-like, shape (n_rounds, len_list)) – Sequence of actions selected by
evaluation policy at each round in offline bandit simulation.

Returns action_dist – Action choice probabilities (can be deterministic).

Return type array-like, shape (n_rounds, n_actions, len_list)

obp.utils.estimate_confidence_interval_by_bootstrap(samples: numpy.ndarray,
alpha: float = 0.05,
n_bootstrap_samples: int =
10000, random_state: Op-
tional[int] = None) → Dict[str,
float]

Estimate confidence interval by nonparametric bootstrap-like procedure.

Parameters

• samples (array-like) – Empirical observed samples to be used to estimate cumulative distri-
bution function.

• alpha (float, default=0.05) – P-value.

• n_bootstrap_samples (int, default=10000) – Number of resampling performed in the boot-
strap procedure.

• random_state (int, default=None) – Controls the random seed in bootstrap sampling.

Returns estimated_confidence_interval – Dictionary storing the estimated mean and upper-lower
confidence bounds.

Return type Dict[str, float]

obp.utils.sigmoid(x: Union[float, numpy.ndarray])→ Union[float, numpy.ndarray]
Calculate sigmoid function.

obp.utils.softmax(x: Union[float, numpy.ndarray])→ Union[float, numpy.ndarray]
Calculate softmax function.
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6.9 References

6.9.1 Papers

6.9.2 Projects

This project is strongly inspired by Open Graph Benchmark –a collection of benchmark datasets, data loaders, and
evaluators for graph machine learning: [github] [project page] [paper].
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